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Groups

Definition 1.1 Closure
Let G be a set. A binary operation on G is a function that assigns each ordered pair of
elements of G an element of . This condition is called closure.

The most familiar binary operations are ordinary addition, subtraction and multiplication of
integers. However, the division of integers is not a binary operation on the integers.

Definition 1.2  Binary operation
Let G be a group. A binary operation is a map of sets:

x:GxG— (.

For ease of notation we write *(a,b) = a*b Va,b € G. Any binary operation on G gives a
way of combining elements. As we have seen, if G = Z then + and x are natural example of binary
operations.

Additive Group Multiplicative Group

Let G be a set, and + be an operation, then | Let G be a set, and be an operation, then (G, o)

(G, +) is an additive group provided is an multiplicative group provided

1.Va,be G,a+be G 6.Va,be G,aocbe G

2.Va,b,c€ G,a+(b+c)=(a+b)+c 7.¥Ya,b,c € G,ao(boc) = (aocb)oc

3. Va € G,30 € G (identity) s.t. 8. Va € G,31 € G (unity) s.t.
a+0=a=0+a aol=a=1o0a

4.Va € G,3 — a € G (additive inverse) s.t. 9.Va € G,3a"! € G (unity) s.t.

a+(—a)=0=(—a)+a aca =1=a""oca

5. (Commutative) Va,b € G,a+b=b+a 10. (Commutative) Va,b € G,acb="boa




Joining additive and multiplicative groups together, we form a ring with distributive laws

11. Va,b,c€ G,(a+b)oc=(aocc)+ (boc)
12. Va,b,c € G,co(a+b) = (coa)+ (cob)

e Abelian group: (1-5) or (6-10)

e Associative Ring: 1-6, with 11 and 12

e Semigroup: 1, 2 only

e Monoid (Semigroup with identity): 1, 2, 3 only

e Commutative ring: 1-5, 6, 10, 11, and 12

e Ring: 1-5, with 11 and 12

e Ring with unity: 1-6, with 8, 11, and 12

e Field: 1-12

Axiom 1.1 Groups

Let G be a set together with a binary operation that assigns to each ordered pair (a,b) of
elements of G an element in G denoted by a * b. We say that (G, %) is a group under this
operation if the following properties are satisfies.

—_

. (Closure) Ya,b € G, axbecG.
2. (Associativity) Va,b,c € G, ax*(bxc)=(axb)*c e G.

3. (Existence of Identity) Va € G,Je c Gst.axe=a=exa € G.
4 1

. (Existence of Inverse) Va € G,3a ! € Gst.axal=e=a"1xa€G.

Example 1.0.1. The set of integers Z, the set of rational numbers Q and the set of real numbers R
are all groups under normal addition.

Example 1.0.2. The set
a b
GL(2,]R):{{C d} a,b,c,dER,ad—bc;&O}

is a non-abelian group under matrix multiplication.

Solution Check if GL(2,R) is closure,asscoiative, has identity and has inverse.
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1. (Closureness) Forall {Zl 21} , [ZQ ZQ] inGL(2,R), witha;d; —bic; # 0and asda—baca # 0.
1 dp 2 d2

ar bi| [ag b ajaz + bica  aibe + b1d
| s B i B
= (ajag + bica)(c1by + dida) — (a1be + bida)(c1a2 + dicy)
= ajagc1be + arasdyids + bibacica + bicadids
— a1a2b201 — angCle — agblcldg — blcgdldg

= (a1d1 — blcl)(ade — 0252) 75 0e GL(Q,R).

Matrix multiplication is closed under GL(2,R).

o ar bi| |az b2| |az bs|.
2. (Associativity) For all [01 dJ , [02 d2] , [03 d:J in GL(2,R), we have

al bl as bQ as b3 . al b1 a9 bQ as b3
C1 d1 (6] d2 C3 d3 o C1 d1 Co d2 C3 d3 )

Matrix multiplication in GL(2,R) is asscoiative.

3. (Existence of identity) V [Z 2} € GL(2,R), 4 [(1] (1)] € GL(2,R) s.t.
a b| |1 0 |1 O||a b |a b
c dl |0 1] |0 1| |c d| |ec d
4. (Existence of inverse) V a b € GL(2,R), 3 ! d b € GL(2,R) s.t
' c d 7 Tad—be |[—c a et

a b 1 d —b| 1 a bl|ld —-b

¢c dl ad—bc|—c a| ad—bcl|c d||—-c a
1 ad —bc —ab+ ba
"~ ad —be |cd—cd —bc+ ad

1 d -b
L(2,R
ad—bc[—c a]€G<’ )

Similarly, we can verify that

since
1

ad — be

— 1
det [ d b}

e :ad_bc(da—bc)zl#O.

The inverse does exists whenever a, b, ¢, d in R.

<

Example 1.0.3 (Non-example). The setZ4 = {0, 1,2, 3} is not a group under multiplication mod-
ulo 4.
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Solution Because ged(2,4) = 2 # 1, which means 27! does not exists in Z4. Each elements in the
group should have its unique inverse. Thus (Z4, -) is not a group. <

Example 1.0.4 (Non-example). The set of integers under subtraction is not a group.

Solution Foralla,b,c € Z,
a—(b—c)=a—-b+c#(a—b)—c

Which viloates the asscoiative property. So the subtraction in the set of integers is not a group. <«
Example 1.0.5. The set Q" of positive rationals is a group under ordinary multiplication.

Example 1.0.6. For a fixed point (z,y) in 2-dimensional cartesian plane R?, we define the geomet-
rical translation 7, ;, : R?> — R? by

Ta,b(xa y) = (l‘ +a, Yy +b)

The set G = {1, | a,b € R} is a group under function composition.

(x +a,y+Db)

A
v
8

Solution 1. (Closureness) We want to show:
vTya,ba Tc,d € G, Ta,b o Tc,d €G
We compute the composition

(Tap 0 Tea)(@,y) = Tap(Tea(x,y))
=Tup(x+c,y+d)
=(z+a+cy+b+d)
=(x+(a+c),y+ (b+d)) asscoiativity of ordinary addition

= La+c,b+d (:C, y)

which closed under G.
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2. (Associativity) For all T, 4, Tt 4, T 1, € G, we have

Topo (Tc,d © Tg,h) =Tap 0 Tetgd+h
— Lat(ctg)b+(d+h)
= Tla+c)+g,(b+d)+h

= dgtc,b+d © Tg,h
= (TapoTea) oTyn

so the translation closed under the function composition.
3. (Existence of identity) VT, ; € G,3T¢, ., € G such that
TopoTeyer =Tap =Teyes ©Tap.
We need to find the value of e; and es.

Ta,b © Tel,ez = Ta,b = Tzz—i—el,b—i-ez = Ta b

)

=a+e=a and b+ey=0b
On solving, we have e; = e3 = 0. Thus Tj o € G is the identity.
4. (Existence of inverse) V1, ; € G,3T, 3 € G such that

Ta,b © Toa,,B = TO,O = Ta,ﬁ © Ta,b'

Compute
TopoTap =T00= Totabts = Too
=a+a=0 and b+3=0
solving equations give us o = —a and 3 = —b. The inverse of T, ;, in G'is T, .

Definition 1.3 Multiplicative group modulo n
The multiplicative group of integers modulo n, denoted Z;, or U(n), is the group

Un):={k € Zy| ged(n,k) =1}

where the binary operation is multiplication, modulo n.

Example 1.0.7. The set
Un)={x€Z" |z <n,ged(z,n) =1}

is a group under multiplication modulo n.

Solution 1. (Closureness) For all z,y € U(n), where z,y < n and ged(z,n) = ged(y,n) = 1,
then zy € U(n) since ged(zy, n) = ged(z, n) ged(y,n) = 1.

2. (Associativity) Associative holds since z(yz) = (zy)z whenever z,y, z in U(n).

3. (Existence of identity) Vx € U(n),31 € U(n) st.x-1=ax=1-=z.
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4. (Existence of inverse) For all # € U(n), since gcd(z,n) = 1. Then by extended Euclidean
algorithm we have
ar+bn=1 for some a,b e U(n) (V)

taking modulo n on (V) yields az = 1 = 27! = a. Thus the inverse of = does exists.

<
Example 1.0.8. Draw a cayley table for U(10).
Solution U(10) contains all the integers that are coprime to 10. That is,
U(10) = {1,3,7,9}.
U(10) is a group under multiplication modulo 10.
10 17 3 709
IS 3 o
3 | 3 PO
717 1 9 3
o2 3 Nl
<

Lemma 1.1 Uniqueness of group identity
In a group G, there is one and only one identity element e.

Proof. For the sake of contradiction. Suppose not, Suppose that e and ¢’ are both identity elements of
group G. Since e is an identity element of GG, then e € G and

ea =a=uae VYac€QG. (V)
Since €’ is also an identity element of G. we said that ¢’ € G and
da=a=ae VaegG. ()
From (©), if we take a = ¢/, thene - ¢/ =¢'.

From (&), if we take a = ¢, thene =¢ - ¢'.

Combining the results we have e = e- ¢’ = ¢/, and so e = €’. There is only one identity element
in G. We proved the uniqueness of identity. O

Lemma 1.2 Cancellation rule
In a group G, ba = ca implies b = ¢; and ab = ac implies b = c.

Proof. Consider G is a group, then

Va€ G,3d' € G st. ad =e=da.
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To show the right cancellation works, we further consider ba = ca. Multiplying a’ on both sides of
the previous equation on right, we obtained

(ba)a’ = (ca)d’

Then, b(aa’) = ¢(aa’) and so be = ce = . The proof is now complete. O

Theorem 1.1  Socks-shoes property

(@aob)t=b"1oqa™? (1.1)

Proof. Since we know that G is a group, then ab € G for all a,b € G since G is closure. Next, we
consider the following equation

(ab)(b"ra™h) = a(bbHa! G is asscoiative
aea™ !
aa™*
= cancellation rule returns identity

this equation states that

(ab)(b~ta™ ) =a(bb~Ha"l|=¢

now we cancel off ab from both sides of the equations, we now arrive at
(ab)t =b"ta ™t

and we have done the proof. O

Remark. In abstract algebra, the position of inputs in binary operator is very important! The commutative
property no necessary hold. a o b # b o «a. E.g. matrix multiplication AB # BA.

Example 1.0.9 (Tutorial). Show that every group with identity e and z * x = z forall x € G is
abelian.

Solution Given (G, %) is a group, there is an identity e € G and for all z € G, x * z = . We want
to show (' is abelian.

Va,b € G,a*a=aand bx*b=>. Since G is a group, so a *x b € G. Observe that

(axb)*(a*xb) =axb=ax(bxa)xb= (axa)x*(bx*b)
=ax(bxa)xb=axa*xbxb
:>a>|<(b>x<a) xb=uax(axb)xb
x(bxa)xph=dx(axb)xph
=|bxa=axb|
Thus * commute and G is an abelian group. <
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1.1 Finite groups and Subgroups

Definition 1.4 Order of group
The number of elements of a group (finite or infinite) is called its order. We will use |G| to
denote the order of G.

The order of an element g in G is the smallest positive integer n such that ¢g" = e (In additive
notation, this would be ng = 0). If no such integer exists, we said that g has infinite order. The
order of an element g € G is denoted by ord(g).

Definition 1.5 Subgroups
If a subset H of a group G is itself a group under the same operation of GG, we say that H is
a subgroup of G.

Remark. We use the notation H < G to mean that H is a subgroup of G. We use the notation H < G to
denote that H is a proper subgroup of G.

The subgroup {e} is called the trivial subgroup of G; a subgroup that is not {e} is called a nontrivial
subgroup of G.

1.1.1 Subgroup tests

Theorem 1.2  One step subgroup test
Suppose G is a multiplicative group and H C G. If

1. H+# o2,
2. Va,be Hyab~' € H

then H is a subgroup of G.

Proof. Given that G is a group and @ # H C G such that for any a, b in subgroup H, we have
ab e H (V)

Then, what we need to do is to show that H < G, which is equivalent to show that H itself is a
group, and H definitely inherits the operation of G. So H is closed under the same operation of G.

(Closure) Take a = x and b = y~! into (©), which for all z,y € H. We have
z(y H)l=zyeH

which is closed under H.

(Associativity) Since asscoiative law holds in G, so as H, since both G and H are sharing the
same operation.

(Existence of identity) Since H is nonempty, then we can randomly pick an element z € H. If
we replace a and b in the hypothesis (V) with a = b = z, then we have

Vee H, zxl=ecH
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(Existence of inverse) Replacing a = e and b = z in (©), we have

ex V= 'eH VYxeH

Example 1.1.1. Let G be an abelian group with identity e. Then
H={zcG|z*=¢}
is a subgroup of G.
Solution We can use one-step subgroup test to check:
1. Since G is a group, thene € Gandsoe = ¢ € H # @.

2. Forall a,b € H, we see that a> = e and b* = e. Next, we compute

= a*(b™")*
_ a2(b2)’1
=ee !

implies ab~lisin H. Thus H < G.

Theorem 1.3 Two-step subgroup test
Suppose G is a multiplicative group and H C G. H is a subgroup of G provided

1. H+# g2,
2. Foranya,bc H,abc H,

3. Forallac H,a ' e H

Theorem 1.4 Finite subgroup test
Suppose G is a multiplicative group and H C G. H is a subgroup of G provided

1. |H| < o0

2. Foralla,b € H, ab € H. (which means H closed under the same operation of i)

Example 1.1.2. Let G be an abelian group under multiplication with identity e. Then
H={z*ze€G}

is a subgroup of G.

Solution
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Since G is a group, then ¢ = ¢ € G and G is nonempty.

For all a,b € H, we see that a = 22 and b = y? Vaz,y € G. Next, we compute

ab™t = () ()

= zxy ty !

= xy_lxy_l
= (zy ')’

implies ab~! = (zy~1)?isin H. Thus H < G. <

Example 1.1.3. Let G =R*\ {0}, (G, -) is a multiplicative group. And
H={x e G|z =1orxis irrational }

is not a subgroup of G.

Solution With two-step subgroup test, step 2 is wrong.
(Counterexample) v/2 € H,but v2v2 =2 ¢ H. <

Example 1.1.4. Let G =R*\ {0}, (G, -) is a multiplicative group. And
K={zxeG|z>1}

is not a subgroup of G.

Solution With two-step subgroup test, step 3 is wrong.

1
(Counterexample) Take 2 € K, but 27! = 3 ¢ K. |

1.2 Cyclic groups

Cyclic groups are groups in which every element is a power of some fixed element. In additive
group, then every element is a multiple of some fixed element. For instance,

a+a+---+a=na, nisinteger
N———

n times

Definition 1.6  Generating subgroup
If G is a multiplicative group and g € G, then the subgroup generated by element g is

(g)={a-a----- a|neZl={¢"|neZ} (1.2)
n times
If the group is abelian and is additive, then
(9) ={a+a+---+a|neZ}={ng|neclZ} (1.3)
—_———

n times

\.

Remark. (g) is called a cyclic subgroup generated by g in group G. When G = (g), then G is called a
cyclic group.
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Definition 1.7  Cyclic group
A group G is cyclic if G = (g) for some g € G. g is a generator of (g).

Lemma 1.3
(g) is a subgroup of G.

Proof. We can use 2-step subgroup test to verify (g) < Gt

1. Since g € (g) # @.

2. For all g1, g2 € (g), we have

— N1 __ N9
g =9 5 g2=4g
where n; and n; are integers. And since

ni+nz

G92=9"9" =y
and nyny € Z implies that g1 g2 € (g).

3. Forall g; € (g), we have g; = g¥, where k is integer. We compute the inverse
g =" =g" -kei
which tells us that g; * € (g).

Therefore, by 2-step subgroup test, (g) is a subgroup of G. O

Lemma 1.4
If G is a cyclic group, then G is abelian.

Proof. Consider a cyclic group G. We want to show G is also an abelian group.
Since G is a group, we say

T2

Vgi,92€ G, g1=9"", g2=g

where n; and ny are integers. In order to show that G is abelian, we need to show that the commu-
tative law applied in group G.

now compute

G192 =a"a™
— gn1+n2
= gh2tm™ commutative in normal addition
= gag =
thus G is an abelian group. O

Definition 1.8  Center of group
The center, Z(G), of a group G is a subset of elements in G that commute with every element
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of G, that s,
Z(G)={9€G|gr==zxgforallz € G}. (14)

Lemma 1.5
The center of a group G is also a subgroup of G.

Proof. We use one-step subgroup test to verify:

1. Since we know that G is a group, certainly the identity e € G and
ex=x=xe Vred.
implies that e € Z(G) and Z(G) is nonempty.
2. For any aq, as in Z(G), we need to show

aayt € Z(Q).

1

Since Z(G) is the center, we have a; = za; and az x = zay for all z € G. Proving a; a;, " €
Z(G) is equivalent to show
alaglx:xalagl Ve e G
compute
ay ay ' = ai(ay ') Associativity of Z(G)
= a1 (zayt) Since a; 'z = way *
= (a1x)ay* Associativity of Z(G)
= (way)ay Since a;x = xa;
=|zaiay 1
which is what we desired.
Therefore the center Z(G) is a subgroup of G by one-step subgroup test. O

Definition 1.9  Group centralizer
Let a be a fixed element of a group G. The centralizer of a in G is

C(a) ={g € G|ga = ag}. (1.5)

Theorem 1.5
Let a be a fixed element in group G. If a has infinite order, then a’ = o’ if and only if i = j.
However, if a has finite order, said, n, then

(a) = {e,a,a?,...,a" 1} (1.6)

and o’ = o’ if and only if n|i — j.
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Proof. Consider a group G, and take an a from G. If a has infinite order, say, ord(a) = oo, then
there is no nonzero integer n such that a” = e. We assume an equation a’ = o’ for some i, j € Z,

we have
d T —e=i—j=0=]i=j]
and we are done.

On the other hand, if a has finite order, just say ord(a) = n. We want to show

(a) ={e,a,a%,...,a" 1}
Apparently, e, a,a?,...,a" ! are all belongs to (a), so as the list {e, a,a?,...,a" !} C (a). Now we
continue to check if {e,a,a?, ... a" 1} D (a).

By division algorithm, there exists some integers ¢ and r such that
k=ng+r, 0<r<n
compute
ak: = qIntr — (an)q a = elq" =qd"

this implies a* = a” € {e,a,a?,...,a""'}. Thus we have

{e,a,a?,...,a"" 1} D (a).

Now the final part is to show a’ = o/ iff n|i — j, we are going to proof on two directions.
(=) If a* = o/, we need to show that n is divisible by i — j. Again we applying the division
algorithm,
t—j=ng+r, 0<r<n
which ¢ is quotient and r is remainder.

compute

al =e = ¥t —¢ division algorithm
=a"ad" =e
= (a")%a" =¢
= elq" = since a” = e
=ea =e

=a =c

but n is the least integer such that a” = e and so the condition 0 < r < n implies 7 = 0. Now we
continue on the opposite side of the statement.

(<) This part is more straightforward. Conversely, if n|i — j, then

a7 = gt division algorithm
=a™ remainder r is zero
— @)"
= ¢t sincea” =e
=e
and we are done. O
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Corollary 1.1
For any group element a, ord(a) = |(a)|.

Proof. By previous theorem, (a) = {e,a,a?,...,a" '} has n elements. Thus |(a)| = ord(a) = n. O

7

Theorem 1.6
Let a be an element of order n in a group and let k be a positive integer. Then

<akz> _ <agcd(n,k)>

and
n

ord(a) = scd(n k)’

Proof. 1. To show that (a*) = (a8°d(™k)) is equivalent of showing (a*) C (agd(:k)),

Consider a* € (a*), and let d = ged(n, k). This implies that d divide k and k = dr for some
integer . Thus

ak _ adr _ (ad)r c <Cld> _ <agcd(n7k)>_

On the other hand, we want to show (a*) D (ag°d(™*)) which is equivalent to show (a?) C
(ak). Consider a? € (a?). By extended Euclidean algorithm,

0'd _ agcd(n,k)

_ ant—i—ks
(a™)"(a")
et(ak)s
(

ak)s e (ab).

for some integers k, s

2. Certainly,

Theorem 1.7 Fundamental theorem of cyclic groups
Suppose G = (g) is cyclic.

1. Every subgroup of G is cyclic.
2. If |G| = n, then the order of any subgroup of G divides n.

3. If |G| = n, then for any positive integer k, n the subgroup (g™/*) is the unique subgroup
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[ of order k.

Proof. 1. Let H is a subgroup of G, if H = {e} then we are done.

Assume that H # {e}, choose ¢" € H with minimal m € Z* by well-ordering. Clearly
(g™) C H. If some g* € H then by division algorithm we have

k=gm+r=r=k—qgm 0<r<m

and then ¢g" = ¢* (¢™)~% € H and so r = 0 by minimality of m and so g¥ = (¢™)? and hence
k m
g~ € (g™

2. Take a subgroup H < G. From (1) we know H is cyclicand H = (¢"*) with minimal positive
integer m. Again we apply division algorithm and write

n=qgn+r=r=n—qgm 0<r<m

and ¢" = ¢" (¢™) " ? € H and so r = 0, and then

[H| = [(g"™)] = ord(g™) = m =2

and thus m|H| = n and |H| divide n.

3. Observe first that k|n we have

n/ky) | n/k| — n _ n —k
(g™ ") = 19" cdlnngk) ~ gk =

Thus certainly (g"/*) is a subgroup of order k. We must show that it is unique. Let H be a
subgroup of G such that |H| = k|n. Since H < G by (1) and (2) we have H = (¢"*) with m|n.

Then we have n n
:H: m = mY = -
b= ] = 1{g™)] = ord(g"™) = s =

Thus m = % and so H = (g™) = | (g"/*) |

O]

Example 1.2.1. InZ;y ={0,1,2,...,11} the complete list of generators is U(12) = {1,5,7,11}. So
for example

(5) = {0,5,10, 15, 20, 25, 30, 35, 40, 45, 50, 55} (mod 12)
= {0,5,10,3,8,1,6,11,4,9,2, 7}
Example 1.2.2. Consider U(50): its order is ¢(50) = 20, and its elements are
{1,3,7,9,11,13,17,19, 21, 23,27, 29, 31, 33, 37, 30, 41, 43, 47, 49}.

Given that U(50) = (3). Find all generators of U(50).
Solution Since (3¥) = (3) & gcd(20,k) = 1 & k € U(20). Since

U(20) = {1,3,7,9,11,13,17, 19},
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the generators of U(50) are

{3,3%,37,39 3 313 37 319} or {3,27,37,33,47,23,13,17}.

<

Example 1.2.3. Find all the subgroups of Zs.
Solution Listed out all the possible divisors of 42 we have

k| 42/k subgroup order k, ((42/k)) with k|42.

1 42 (42) = {0}

2 | 21 (21) = {0, 21}

3| 14 (14) = {0, 14, 18}

6 | 7 (7y = {0, 7,14, 21, 28,35}

71 6 (6) = {0, 6,12, 18, 24, 30, 36}

14 3 (3) ={0,3,6,9,12,15, 18,21, 24,27, 30, 33, 36,39}

21 2 (2) is set of all even numbers in Z4o

421 1 (1) = Zyo

|
Example 1.2.4. Draw a subgroup lattice of Zs.
Solution By prime factorizing 30 = 2 - 3 - 5. The factors of 30 are
1,2,3,5,6,10,15,30
The lattice diagram is
L3
(5) (3) (2)
(15) (10) (6)
(0)
<
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1.3 Permutation

Definition 1.10

A permutation of a set A is a function from A to A that is both one-to one and onto. A
permutation group of a set A is the set of permutations of A that forms a group under
function composition

Example 1.3.1. Let S3 denote the set of all one-to-one functions from {1, 2,3} to itself. The S5
under function composition, is a group with six elements.

Sy ={1,(12),(13),(23),(123),(132)}
={1,(12),(13),(23),(13)(12),(12)(13)}

Example 1.3.2. Let A ={1,2,3,4}, and
Sy={o|o:A— Aisa permutation from A onto A}.
We defined o as follow:
c(l)—2, 0(2)—3, c3)—4, o4~ 1

Now we can express o as a permutation such that

02(10(1)02(1)03(1)):@ g i iI)

where

Example 1.3.3. Givena = (23154) and 8 = (2134) in S5. Compute a3, and 3.

Solution Compute

(12 3 4 5\(1 23 45
“\53124)3 1425
(12345
“\1 5 2 34

= (1)(2543)

= (2543)
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and

12 3 4 5\ "
=1ttt 11
31 4 25
(1 23 45
~\2 4135
=(1243)(5)
=(1243)
<
Lemma 1.6
Every permutation of a finite set can be written as a cycle or as a product of disjoint cycles.
Theorem 1.8
If the pair of cycles o = (a1, az,...,an) and 8 = (b1, be, ..., by,) have no entries in common,
then a3 = fa. In other words, any two disjoint cycles commute.
Proof. Let o« = (a1,a2,...,an) and 8 = (b1,be,...,by) be two disjoint cycles. These cycles are

defined on the set
./4: {al,ag,...,at,bl,bg,...,bs,Cl,CQ,...,CT}.
———

Fixed points

and so «, 8 € Siys4+r. We want to show that a o 8 = o « is equivalent to show
(a0 B)() = (Boa)(z) Ve A

We are considering three possible cases:

Case 1: Suppose that = a;, where 1 <14 <t. On LHS

(a0 B)(a;) = a(B(ai))
= a(a;)

= Qj+1-

and on RHS

Thus, LHS = RHS for first case.
Case 2: Suppose that x = b;, where 1 < j < s. On LHS

CHAPTER 1. GROUPS | 19



(a0 B)(b;) = a(B(b)))
= a(bj+1)

and on RHS

(8 o a)(ai) = Bla(bs))

= B(b;)

Thus, LHS = RHS for second case.

Case 3: Atlast, suppose that x = ¢, where 1 < k < r. Each ¢, are fixed points and they always
stay in the same value whenever any cycles.

(o B)(ck) = cx = (Boa)(ck).

Hence, we conclude that any disjoint cycles are commute. O

Definition 1.11
A permutation that can be expressed as a product of an even (or odd) number of 2-cycles is
called an even (or odd) permutation.

Example 1.3.4. Write

(12
37

Solution We can express o as

34567 8)
4125 8 6 8

into the product of 2-cycles.

o=(134)(27865)
= (14)(13)(25)(26)(28)(27).

Example 1.3.5. Find the order of 5 = (1234)(567) in S7.
Solution The order of a disjoint cycle is the LCM of the order of each disjoint cycles. Namely,

ord(f) = LCM (ord (1234),0ord (56 7))
— LOM(4,3)
4x3
- ged(4,3)
=12.
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Definition 1.12  Alternating group
The group of even permutations of n symbols is denoted by A,, and is called the alternating

group of degree n.

Theorem 1.9
For n > 1, A, has order n!/2.

1.4 Dihedral Group

Dihedral groups are an essential class in group theory that arise naturally in geometry and other
areas of mathematics.

For n > 3, the dihedral group D,, is described as the rigid motions taking a regular n-gon back
to itself, with the operations

We could said that the rotational symmetry group of an equilateral triangle, C3, is isomorphic
to Z3. We can combine the horizontal reflection and rotations and form another reflection lines,
which these reflection lines runs from one of the vertices to the center of the opposing side.

120° ® ®
> =r

) =r

240 ® O
o o o

Theorem 1.10
Let the n-degree dihedral group

2

D,={(rs|r"=e,s®=¢,srs =r"1).
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o0
) =r

360 o0
@ o o o

Figure 1.1: The rotation r on dihedral group D3 with order 6. r in D3 is described as rotating
equilateral triangle 120 degree.

® ]
oo

I
~

)
> XK

Figure 1.2: The group action f on dihedral group D3 with order 6. f is a horizontal flip.

2. Th frhis —
e order of r* is acd(n k)

Proof. 1. Compute

and we are done.

2. We will first show that 7* = e if and only if nk.

(=) Consider e = r*, then by division algorithm we have
k=na+b where)<b<n.

Thus

e =k = pratb — (pnyaph — gaph — 40

Since the smallest possible integer m by well-ordering, such that v = e, isn,b = 0.
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Figure 1.3: The composition of 120 deg rotation with horizontal reflection form another reflection
line at vertice

(<) Conversely, if n divide k, then k£ = ns for some integer s. Hence

Thus r* = e <= nlk.

Now letb = r* € D,,, since r is a generator of D,,. We shall show that the smallest integer m
such that r* = e is n/k. Let d = ged(n, k). Consider

e=bm=rkm,

Since this is the smallest integer m such that n|km. Thus 2 divide “£. Because d is the greatest
common divisor of n and k, implies % and § are relatively prime. Hence

nimk _ nl
dl d d
The smallest such m is 7. Thus
Ey n
ord(r®) = scd(n )’

Example 1.4.1. Let

G = SLy(Z3) = { [‘CL Z]

ad—bc:l;a,b,c,dGZg}.

Show that |G| = 48.

Solution From the first row, for all (a,b) € Z3 x Z3 \ {(0,0)}. There are (3P x P;) — 1 = 8
possibilities.
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For the second row, for all (¢, d) € Z3 xZ3\ (aZs, bZ3). There are (*P1 x3P1)—3 = 6 possibilities.

Thus the order of group G is the product of the number of possibilities of these two rows.
|G| =8 x 6 =48. <

1.5 Normal subgroups, Quotient groups

1.5.1 Cosets

Definition 1.13  Cosets
Let G be a group and let H be a subset of G. For any a € G, the set

aH :={ah|h € H}

is called the left coset of H in G containing element a.
Analogously, the set
Ha :={ha|h € H}

is called the right coset of H in G containing element a. In this case, the element a is called
the coset representative of aH (or Ha).
We use |aH | (or |Hal|) to be the number of elements in the left (or right) coset.

Example 1.5.1. Consider G = Zg = {0, 1,2, ...,8}(mod9). We take a cyclic subgroup
H = (3)={0,3,6}
which came from (G, +9). All left cosets of G with respect to H are {H,1 +9 H,2 +9 H} where

0+H={0+0,0+3,0+6} (mod9) = {0,3,6} = H
1H=1+H={140,1+3,1+6}(mod9) = {1,4,7}
2H =2+ H ={2+0,243,2+6} (mod9) = {2,5,8}
3H=3+H={3+0,3+3,3+6} (mod9) = {3,6,0} = H

As for the right cosets of G with respect to H are {H, H +9 1, H +9 2}. Pay attention that now
the element of coset are being added to right-hand side instead of from left side.

H+0={0+0,0+3,0+6} (mod9) = {0,3,6} = H
Hl=H+1={0+1,3+1,6+1} (mod9) = {1,4,7}
H2=H+2={0+23+2,6+2} (mod9) = {2,5,8}
H3=H+3={0+3,3+3,6+3} (mod9) = {3,6,0} = H

Also, we can draw multiplication table of the cosets.
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H 1+H 2+ H

H H 1+H 2+ H
1+H |1+H 2+H H
2+H |2+ H H 1+H

Two cosets can also be multiply together. For instance,
(1+H)-2+H) =(1+2)+H=0+H=H
and
2+H)-2+H)=2+2)+H=4+H=1+H.
Example 1.5.2. The reals under addition (R, +), the subgroup (Z, +) of integers. Now
R/Z ={r+Z|r € R}.

The cosets are r + Z with 7 € [0,1). R/Z is isomorphic to the circle group S! of complex numbers
of absolute value 1. The isomorphism is

Ol(r +2)] = e,

Figure 1.4: The abelian group R/Z can be generated by ™.

1.5.2 Normal subgroups

Definition 1.14 Normal subgroups
A subgroup H of (G, -) is called a normal subgroup if for all g € G we have

gH = Hyg. (1.7)

We shall denote that H is a subgroup of G by H < G, and that H is a normal subgroup of G
by H < G.

If H is a normal subgroup of G, and the order of H is equal to the order of G, we called H
the proper normal subgroup, write as H < G.
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You should be very careful here. The equality gH{ = Hgisa set equality. They are not constants
or numbers! It says that a right coset is equal to left a coset, it is not an equality elementwise.

Example 1.5.3. Let R[z] denote the group of all polynomial with real coefficients under normal
addition.

For any f in R[z], let f’ denote the derivative of f. Then the mapping f — f’ is a homomor-
phism from R[z] to itself. The kernel of the derivative mapping is the set of all constant polynomials

f(x)=c.

Now suppose we have a group (G, -), and H is a normal subgroup of G, just said H < G. The
set G/ H is defined by
G/H = {gH|g € H}.

G/H is known as a quotient group.

Example 1.5.4. Show that if H and K are normal subgroups of a group G such that H N K = {e},
then hk = khforallh € Hand k € K.

Solution We knew that H < G and K < G, these conditions imply
gHg ' CH, gKg'CK Vgeg.

Since khk~! € kHk™! C kHkE™' C H. We want to show hk = kh forallh € H and k € K.
Compute

h(kh 'k =e= hkh 'kt =e¢

= hkh™! = ke
= hkh™' = khh~!
= hk = kh.

1.5.3 Quotient group

Definition 1.15 Quotient group
Let G be a group, with H a subgroup such that g = Hg for any g € G. The set

G/H = {gH | g € G}

of cosets of H in G is called a quotient group.

We can check that G/ H is indeed a group:
e Because gH = Hg = gH¢' = g¢'H and G/H is closed under the same binary operator.
e Binary operationo : G/H x G/H, (¢9H,¢'H) — gHg' H is asscoiative.

e The identity element is H since H(gH) = gH for any g in G.
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e The inverse of gH is g~ ' H, since

(gH) (9~ 'H) = (97" H)(gH)
= (99 HH
=eH

1.6 Group homomorphisms

Definition 1.16 Group homomorphisms
A group homomorphism is a map f : (G,og) — (H, ex) that respects binary operations:

f(a)em f(b) = f(aogb) Va,be G (1.8)

Theorem 1.11 Properties of homomorphism
Let ¢ be a homomorphism from a group G to a group G’ and let g be an element of G. Then

1. ¢ carries the identity of G to the identity of G'.

2. ¢(g™) = (¢(g))" foralln € Z.

3. If ord(g) is finite, then ord(¢(g)) divides ord(g).

4. ker(¢) is a subgroup of G.

5. ¢(a) = ¢(b) if and only if a ker(¢) = bker (o).

6. If (g) = ¢/, then ™' (¢") = {z € G | ¢(2) = g} = gker ().

Example 1.6.1. Let G be any group and let a be any element of G. Let ¢ : Z — G be defined by
¢(n) = a"

Show that ¢ is a homomorphism. Find the kernel of ¢.

Solution For all ny, ny in Z, we want to show

¢(n1 +na) = ¢(n1) p(n2).

In fact,
¢(n1 +na) = a™ " =a" a" = ¢(n1) P(n2).

which means ¢ preserves the group operation of G. Again we want to show ¢ is both one-to-one
and onto.

1. (One-to-one) Forall z,y € Z,

pz)=y=a"=y
logy

= , a>0
loga
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2. (Onto) Forall z,y € Z,
¢(z) = o(y) = a” =a’ =z =y.

Hence, we compute the kernel of ¢,

Ker(¢) ={n € Z| ¢(n) =1}
={neZ|ad" =1}
={neZ|a" =d}
={neZ|n=0}
={0}.

1.7 Isomorphism

Definition 1.17 Group isomorphisms
An isomorphism ¢ from a group G to a group G’ is a one-to-one mapping from G onto G’
that preserves the group operation. That is,

¢(a) o #(b) = d(a o b)

foralla,b € G. If there is an isomorphism from G — G’, we say that G and G’ are isomorphic
and write as G = G'.

There are four separate steps involved in proving that a group G is isomorphic to another
group G'.

1. Define a candidate for the isomorphism; that is, assume that ¢(a) = ¢(b) and hence prove
that a = b.

2. Prove that ¢ is one-to-one; that is, assume that ¢(a) = ¢(b) and hence prove that a = b.
3. Prove that ¢ is onto; that is, for any element ¢’ € G/, find an element g € G such that ¢(g) = ¢'.

4. Prove that ¢ is operation-preserving; that is, show that
¢(a) e ¢(b) = ¢(a ocr b)
forall a,b € G.

Example 1.7.1. Let G be the real numbers under addition and G’ be the positive real numbers
under multiplication. G and G’ are isomorphic under the mapping

bla) = 2°.
Solution Define the mapping ¢ : (G =R, +) — (G’ = R™,"). For all z,y in G, we want to show

oz +y) = d(z) 9(y).

In fact,
Plx+y) =277 =22V = ¢(x) ¢(y).
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which means ¢ is homomorphism. Again we want to show ¢ is both one-to-one and onto.

1. (One-to-one) For all z,y € G,

p(r)=y=2"=y
=z =Ilogy,y, y>0

2. (Onto) Forall z,y € G,

Hence, we compute the kernel of ¢,

Ker(d) = {n € R| 6(z) = 1}
={neR|2" =1}
={neR|z=0}
= {0}.

<

Example 1.7.2. Let G = SL(2,R), the group of 2 x 2 real matrices with determinant 1. Let M be
any 2 x 2 matrix with determinant 1. The mapping ¢y from G — G defined by

$r(A) = MAM ™

is an isomorphism.

Solution 1. First we are going to show that ¢, is one-to-one; that is, for any A;, Ay € G, if
¢M(A1) = gZ)M(AQ), then A, = As.

drr(A1) = dpr(Ag) = MA ML = MA, M1
=M 'MAM M =M "'"MAM M
= JTAI =TA,1
= A1 = As.

2. Show ¢, is onto. For all A; € G, we need to find A; € G such that

dn(Ar) = As.
We find an equation for A;,

¢M(A1) = Ay = MAlMil = Ay
= A = M_lAQM

Now we verify that ¢/(A;) = Az.. Compute
drr (A1) = par(M 1AL M)
=M (M TAM) M

=T1Ay1
= As.
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3. At last we are going to show ¢)s is a homomorphism. That is,

VA1, A € G, onm(Ar Ag) = danr(Ar) o (Asz).

We start from LHS,
¢M(A1 A2) = MA1 AQM_I
= MA T A M™!
= MA, (M 'M) A;M ™!
= (MA; M~ (MA; MY
= on(A1)dn(Az).
Therefore ¢,/ is an isomorphism. <

Example 1.7.3. The group U(10) is not isomorphic to U (12).

Theorem 1.12 Cayley’s theorem
Every group is isomorphism to a group of permutation.

Proof. Let G be a multiplication group. From group G, we need to construct a permutation group
G that is isomorphic to G.

Step 1: construct permutation group G

Given G, for all g € G. We define a map Tj, : G — G such that
Ty(z) = gx.

Let G = {T, | g € G}. We need to show that G under function composition is a group.

1. (Closureness) For all T, T}, € G, we want to show T, o T}, € G.

TyoTh =Ty (Th(x))
= Ty(hx)
= g(hz)
= (gh)z
= gh(:L‘) €G.

2. (Associativity) For all T,, T}, T}, € G, we have
Tg e} (Th (¢] Tk) = Tg(hk) = T(gh)k = (Tg (¢] Th) ¢} Tk.

The asscoiativity holds in G.
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3. (Existence of identity) For all T, € G, there exists an T,y € G such that

TgOTgIZTging/:Tg
=99 =y
=q =1

sothatg'(z) =1 -2 = .
4. (Existence of inverse) For all T, € G, the inverse of T}, is

T,1(z)=g 'z Vgeq.

Therefore G is a group under function composition. In the next step we are going to prove that the
mapping from G to G is an isomorphism.

Step 2: show that ¢ : G — G is isomorphism

We now define a mapping ¢ : G — G, where

#(g) = Ty(z) =gz Vg €G.

We perform the 3 steps to check ¢(g) is an isomorphism.

1. (¢ is one-to-one) Forall g, h € G,

¢(9) = ¢(h) = Ty =Tj,
= Ty(x) =Ty(z) Vz el
=>gr=hxr VreG
= g=h.

2. (¢ is onto) For all T, € G, we need to find an g € G such that ¢(g) = T}

P(g) = Ty = Tg(x) = Tg’(x)
= gr =gz
=g=4.

3. (¢ is homomorphism) To show that ¢ is homomorphism, it is equivalent to show that

d(goh) = é(g) o(h).
From LHS,
#(goh) = Tyn = Tgh(ff)
= (g o h):ﬂ

=gz - hx
= ¢(g) ¢(h).
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Definition 1.18  Group stabilizer

If G is a group of permutations on the set S and s € S then we define the stabilizer of s to

be the set
Stabg(s) = {¢p € G| ¢(s) = s}.

Lemma 1.7

If G is a group of permutations of the set S and s € S. Then Stab¢(s) is a subgroup of G.

Proof. Using two-step subgroup test to verify:

1. 3¢ : S — S € Stabg(s) s.t. ¢(x) = x. Thus Stabg(s) # &.

2. For all ¢1, ¢2 € Stabg(s), we have
(¢10d2)(s) = ¢1(P2(s)) = d1(s) =s€ S

Therefore ¢; o ¢ € Stabg(s).

3. For all ¢ € Stabg(s),

So ¢! is also in Stabg(s).

Therefore Stabg(s) is a subgroup of G.

Definition 1.19  Group orbit

If G is a group of permutations of the set S and s € S. We define the orbit to be the set

Orbitg(s) = {#(s) | ¢ € G}.

Theorem 1.13  Orbit-Stabilizer theorem
For any group action ¢ : G — Permutation(S), and for any s € S,

| Orbitg(s)| - | Stabg(s)| = |G|.

(1.9)

Proof. We define a mapping f : G/ Stabg(s) — Orbitg(s) such that

f(¢Staba(s)) = é(s).

f is a homomorphism, and we want to show f is one-to-one and onto.
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1. (One-to-one) For all ¢1, ¢2 € Stabg(s), we have

¢1 Stabg(s) = ¢ Stabg(s) = (¢! 0 h2) € tabg( )
((/51 o ¢2)(s )
“Hg2(s) =

= <b2( ) =¢u(s )

2. (Onto) We again want to show f is onto. For all ¢ € Orbitg(s), we have
f (¢ Staba(s)) = é(s).

So f is both one-to-one and onto. Which means

|G|

G/ Staba(s)| = | Orbita(s)l =yt sy

= | Orbitg(s)|

= | Orbitg(s)]| - | Stabg(s)| = |G].
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Theorem 1.14
The group of rotations of a cube is isomorphic to Ss.

Proof. We can proof it by visualizing the rigid motions of a cube rotated along the possible axes.

One of three possible axes of rotation through the centers of opposite faces.
Each rotation could be 0°, 90°, 180°, or 270°, for a total of 3 x 4 = 12 rota-
tions of this type. But three in this count are the trivial identity rotation, which
we only count once, so there are really 10 unique rotations along these axes.

\

One of four possible axes of rotation through opposite vertices. Each could
be either 120° or 240°, so there are 4 x 2 = 8 rotations of this type.
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One of six possible axes of rotation through the centers of opposite edges. Only a 180°
rotation around these axes would preserve the shape, so we have only 6 rotations possible.

There are 10 + 8 + 6 = 24 possible ways to rotate a cube, this is equal to the order of S;. The
order of Sy is
|S4] =4l =4 x3x2x1=24

Theorem 1.15 Properties of isomorphisms
Suppose that ¢ is an isomorphism from a group G onto a group G'. Then

1. ¢ carries the identity of G to the identity of G'.

2. For every integer n and for every group element ¢ in G,

For any elements @ and b of G, @ and b commute if and only if ¢(a) and ¢(b) commute.
G = (a) if and only if G’ = (¢(a)).
ord(a) = ord(¢(a)) forall a € G.

SANEERCLE

For a fixed integer k and fixed group element b € G, the equation z* = b has the same
number of solutions in G as does the equation z* = ¢(b) € G.

7. If G is finite, then G and G’ have exactly the same number of elements of every order.

Proof. 1. Work with G, we know e = g"¢™", so

dle) = ¢lg"g™") = € = d(g")o(g™")
= =g(grgrxg)dlg xgx o xgT))

n times n t?;nes
= =0(g) xd(g) * - % d(9) Blg™") xdlg ") ¥ x (g7 ")
n times n times
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2. Using the similar technique, we have

d(g") = p(gxg*---xg) = d(g) * 9(g) * -+ * 9(g) = P(g)"

~
n times n times

3. Forall a,b € G, a and b commute if and only if

ab = ba <= ¢(ab) = ¢(ba)

= ¢(a)p(b) = ¢(b)p(a)
(a) and ¢(b) commute

<= @ is abelian.

4. Foralla € G,

(5, 6,7) leave as tutorial.

Theorem 1.16
Suppose that ¢ is an isomorphism from a group G onto a group G'. Then

1. ¢~!is an isomorphism from G’ onto G.
2. G is abelian if and only if G’ is abelian.
3. Gis cyclic if and only if G is cyclic.
4. If K is a subgroup of G, then
6(K) = {6(k) | k € K}

is a subgroup of G'.

IN
IN

Proof. 1. Given that ¢ is a homomorphism, then for all a,b € G we have

¢(ab) = ¢(a) 4(b).
We need to prove that ¢~ lisalsoa homomorphism, that is,

Va' b € G ¢ (dV) = o7 (d)pT (V).
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Certainly

Since ¢ is homomorphism,
é(ab) = ¢(a) ¢(b) = ¢(ab) = a't/
= ab=¢ (V)
= ¢_1(a/) ¢_1(b/) _ ¢—1(a/b/)

2. Refer to property (3) of previous theorem.
3. Refer to property (4) of previous theorem.

4. Given K is a subgroup of G, we want to show that ¢(K) < G’. The main idea is to use
one-step subgroup test:

G—°* L

IN
IN

e Clearly, ¢/ = ¢(e) € ¢(K). Thus ¢(K) is nonempty. (Sincee € K # @ as K < G).

e Forall z,y € ¢(K),
2 € §(K) = = dlen)

and
Y € H(K) =z = ¢(az)

where a1,z € K. Compute

zy~t = ¢(on)p(oz) 7!
(c1)p(op ™)
(ay )

=9
=9¢

Since a1, ' € K, thus ¢(ajay ') in ¢(K) = zy~ ' € ¢(K).

Theorem 1.17 Sylow’s theorem
Let G be a finite group such that p™ divides |G|, where p is prime. Then there exists a sub-
group of order p".

Proof. Assume that |G| = p"m, where m = p"k with ged(p, k) = 1. Our central strategy is to
consider a cleverly chosen group action of G and prove one of the stabilizer subgroups has order
p". We will need to heavily exploit the orbit-stabilizer theorem.

Let S be the set of all subsets of G of order p”. An element of S is an unordered n-tuple of

distinct elements in G. There is a natural action of G on S by term-by-term composition on the left.
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Consider o € S. If we fix an ordering o = {01,02,...,0pn} € S, then
glo):={g*01,9%02,...,g%x0opn}.
We first claim that | Stab(o)| < p". To see this we define the function
f:Stab(o) = o

g—gx0o1

By the cancellation property for groups this is an injective map. Hence

| Stab()| < |of = p".

On the other hand, observe that

m P m! pn_lp"m—j pn_lp"m—j
P (™) (pm — pn)! pr—J P —J

J=0 Jj=1

If 1 <j < p" —1then jis divisible by p at most n — 1 times. This means that p"m — j and p" — j
have the same number of p factors, namely the number of p factor of j. This means that

pt—1 .
] 2n=d
o1 Pt

has no p factors. Hence p"u, where ged(p, u) = 1.

Now recall that S is the disjoint union of the orbits of our action of G on S. Hence there must
be an o € S such that
| Orbit(o)| = p°t
where s < r and ged(p, t) = 1. By the orbit-stabilizer theorem we know that
n—+r—s
| Stab(o)| = 1%

Because | Stab(o)| € N and u,t are coprime to p, we deduce that u/t is natural number. Hence
| Stab(o)| > p".

For this choice of o € S, Stab(c) is thus a subgroup of size p". O

Historically this is a slight extension of what is called Sylow’s First Theorem. There are two
more which describe the properties of such subgroups in greater depth.

1.8 Automorphisms

Definition 1.20 Automorphisms
An isomorphism from a group G onto itself is called an automorphism.
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Example 1.8.1. Let the 2-dimensional cartesian plane
R? = {(a,b)|a,b € R}.

Then
¢(a7 b) - (b, a)

is an automorphism of the group R? under componentwise addition.

Example 1.8.2. Compute Aut(Zi).
Solution For any o € Aut(Zy¢) and for any k € Z1o. We define k — k(1) such that

l—ay: Zip— Zi, o(x)==

3 asz: ZlO — Zlo, 043(1’) =3z
7= arp: ZIO — Z107 a7(x) =Tz
99— ag: Ziy — ZlO, ag(x) =9z

In fact, Aut(Zo) is isomorphic to U(10) = {1, 3,7,9}. Aut(Z0) is defined as

Aut(Z1) = {a : Z10 — Zio | @ is an automorphism}.

‘10 | 1 3 7 9 o |ag az3 ar ag
111 3.7 9 a1 | o a3 ar  ag
3 3 9 1 7 Qs a3 Qg @« Q7
77 1 9 3 a7 | ar a1 a9 a3
9 9 7 3 1 (675} Qg Q7 a3 O

Theorem 1.18
For every positive integer n, Aut(Z,,) is isomorphic to U(n).

Example 1.8.3. The automorphisms of D3 is Aut(D3) = (o, §) = D3, where
{a(r) =r {B(T) r?
a(f)=rf B(f) =1

All of these automorphisms are inner (of the form f, : g — 7 gz). Two Cayley diagrams for
Aut(D3) are shown below.
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Definition 1.21 Inner automorphisms
Let G' be a group, and let a € G. The function ¢, defined by

L' forallz € G

¢o(z) = axa™
is called the inner automorphism of G included by a.
When G is a group, we use Aut(G) to denote the set of all automorphisms of G and Inn(G)
to denote the set of all inner automorphisms of G.

Theorem 1.19
The set of automorphisms of a group and the set of inner automorphisms of a group are
both groups under the operation of function composition.

Proof. The set of inner automorphisms of G included by a is
Inn(G) = {¢q|¢q is an inner automorphism}.

Then satisfied the group properties:

1. We want to show V¢,, ¢y, € Inn(G), ¢4 0 ¢p € Inn(G).
Compute (¢, o ¢p)(g) for all gin G,

(¢a © b)(9) = ¢a(Pn(9))

= ¢q(bgb™1) (Defn. of inner automorphism)
= a(bgb™Ha™!

— (ab)g(b"a™)

= (ab) g (ab) ™! (Socks-shoes property)

= dap(g9) € Inn(G)

Thus Inn(G) is closed under function composition.
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2. Next we want to show the associativity in Inn(G), that is,

Va, Po, be € Inn(G), ¢q © (¢b © ch) = (¢a o ¢b) o ¢

we compute ¢, o (¢p © ¢c).

a(be)g(be)tat
1,1

[$a 0 (d5 0 ¢c)](9)
ab)ege b
ab)ege™t (ab) ™t

(¢a 0 dp) © Pcl(g)

=
= (
[

3. Suppose e is the identity element of G, then ¢.(g) = ege™!

of Inn(G).

= g € Inn(G). ¢, is the identity

4. For all ¢, € Inn(G), there exists ¢,-1 € Inn(G) such that

600 61 = alag~'a ")
— (aa)g ' (aa™")

We have shown that the inner automorphisms are group. Is Inn(G) a subgroup of Aut(G)? Of
course it is. We are going to use one-step subgroup test to find out.

One-step subgroup test:

1. First of all, we want to show

Voa, dp € Inn(G), ¢q 0 ¢p—1 € Inn(G).

we compute

(¢a 0 dp-1)(9) = Palbg '07")
= a(bg_lb_l)(f1
— (ab)g* (ab)?
= ¢(ab)—1 € Inn(G)

1.8.1 Isomorphism theorems

Theorem 1.20  First Isomorphism theorem
Let f : G — H be ahomomorphism of groups with kernel K. Then the quotient group G/K
is isomorphic to Im f.

Proof. Step 1: Check if Ker(¢) is a subgroup of G.
The main idea is to use one-step subgroup test to check if Ker(¢) < G:
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1. Since ¢ is a homomorphism, then ¢(e) = ¢; and so
e € Ker(¢) # 9.

So Ker(¢) is nonempty.

2. For all g,h € Ker(¢), we need to show that
gh™t € Ker(¢).
Given that g € Ker(¢), then ¢(g) = e. Also, h € Ker(¢), then ¢(h) = e. Now compute

d(gh™") = ¢(g) p(h ")
= ¢(g) p(h) "
=ee !

=e € Ker(¢).
Since gh™! € Ker(¢), thus Ker(¢) < G.

Step 2: Check if Ker(¢) <G

We want to show aKer(¢)a~t C Ker(¢) for all a € G. This is equivalent to show if y €
aKer(¢)a™!, then y is in Ker(¢). Using normal subgroup test and check:

Yy E aKer(qb)a_l =alya e Ker(¢)

Thus y is in Ker(¢). So Ker(¢) < G.

G—°% o
,ﬂ < <
| Ker(¢) 6(G)
G/ Ker(9)

Moreover, we still need to show ¢(G) < G'. ¢(G) is the image of G that is define as

o(G) ={é(g9) | g € G}.

Again we use one-step subgroup test to check. For all 7,y € ¢(G), we want to show zy~!isin ¢(G).
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Let z = ¢(g1), and y = ¢(g2) where g1, g2 € G. Compute

zy~t = (1) d(g5 ")
= ¢(g19; ") € 9(G)

The map T : G/Ker(¢) — ¢(G) (where T'(gKer(¢)) = ¢(g)) is one-to-one and onto. So T is
an isomorphism. O

Theorem 1.21 Second Isomorphism Theorem
Let K be a proper subgroup of GG, and N < G. Then

1. NK = {nk|n € N,k € K} is a proper subgroup of G, write NK < G.
2. NaNKand KNN<K.

3. K/(K N N) is isomorphism to NK/N.

G

<

K /NK\ N
\KHN/

Proof. 1. Clearly NK C G. By using two-step subgroup test. For all nk,n'k’ € NK
nkn'k' = (nn')(kk') € NK.

and
nk=e=nkk 'n"' =e = (nk)"' =k"'n"! € NK.

Thus NK < G.
2. Clearly N « NK < G, since aN = Na whenever a in NK. N < G implies that the mapping

7 : G — G/N that maps a — Na is a surjective homomorphism. We define f : K — G/N
which k& — Nk whenever k in K. Apparently f is also homomorphism.

The kernel of f is
ker f ={k € K| f(k) = Ne}
={ke€ K| Nk = Ne}
={keK|ke N}
=KnNN.
Thus KN N < K.
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3. Find the image of f,

Imf={NkeG/N|keK}
={Nnke G/N|ne N, ke K}
— {Nnk € G/N |nk € NK}
= NK/N.

By First Isomorphism Theorem, we now have K /(K N N) is isomorphism to NK/N.

kernel

O
Theorem 1.22  Subgroup of the quotient group G/N
Let N« G,andlet N C K < G. Then K/N is a proper subset of G/N.
Proof. Clearly if N <« K, then
K/N ={Ny|ke K} Cc G/N ={N,|g € G}.
Thus K/N < G/N. O

1.9 Lagrange Theorem

Theorem 1.23 Lagrange theorem
If G is a finite group and H is a subgroup of G, then |H| divides |G|.

Proof. Let a1H,a2H,...,a,H denote the distinct left cosets and right cosets of H in G. For all
a € G,Jdist.alH = a;H and a C aH. Thus we can say that each members in G belongs to the one
of the cosets of a;H. Since |a;H| = |H|, so

r

G=|JaH =G| =) |axH| = [H|=r(|H|).

k=1 k=1 k=1
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Thus |H| divides |G| O

Example 1.9.1. Given G is a group of order 6. Find all possible subgroups of G.

Solution Suppose H is a subgroup of G, H < G, and so by Lagrange’s theorem we have
[H| |G| =6

which implies |H| € {1,2,3,6}.
If the order of H is one, then H = (e) = {e}.

On the other hand, when |H| = 6 which means |H| = |G| = 6 and H = G thatis, H is trivial
subgroup.

/\
\/

Theorem 1.24
If G is a group of order p, where p is a prime. Then G is cyclic.

Proof. Suppose H is a subgroup of G and we apply Lagrange’s theorem, which we have
H| |Gl =p
Assume H # {e} and the order of H is greater than one, implies |H| = pand so |G| = |H| =
Hence, since H # {e}, then there exists a # e and a € H. So using a to generate we obtained
H =G = (a)

implies that H and G are both cyclic. O

Example 1.9.2 (Tutorial). Draw a subgroup lattice of Zg.
Solution Suppose H is a subgroup of Zgy. By Lagrange theorem,
|H| |60 =2%-3-5.

Thus,
|H| € {1,2,4,3,6,12,5,10, 20, 15,30,60}.

The lattice diagram is as follow:
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/X ><
X X/
N

(0)

1.10 External Direct Product

Definition 1.22  External direct product

Given groups (G, *) and (H,+), the external direct product of G, H written as G & H, is
the set of all ordered pairs (g, k) for which the the binary operation on G & H is defined
component-wise:

(91, h1) ® (92, h2) = (91 * g2, h1 + h2).

The resulting algebraic object satisfies the axioms for a group. Specifically:

e Associativity, the binary operation on G x H is indeed asscoiative.

e Existence of identity, the direct product has an identity element, namely (e, e2), where e; is
the identity element of GG and ey is the identity element of H.

e Existence of inverses, the inverse of an element (g, h) of G x H is the pair (¢!, h™!), where
g~ !is the inverse of g € G, and h™! is the inverse of h € H.

Example 1.10.1. Find U(8) & U(10).

Solution We have U(8) = {1,3,5,7} and U(8) = {1,3,7,9}. Then U(8) & U(10) is the cartesian
product of each element.

O N W
A~ N N
O N L=
W W w w
— — — —
A~ N N
-~ 1 ~J
— — — —
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Theorem 1.25
The order of an element in a direct product of a finite number of finite groups is the least
common multiple of the orders of the components of the element. In symbols,

(91, 92, - -+ gn)| = LOM (0rd(g1), ord(g2), - - -, ord(gn))-

Proof. First we consider the case where the direct product has two components.
Consider (g1, 92) € G1 & Ga. Let s = LCM (ord(g1),ord(g2)) and t = |(g1, g2)|- Then
(91,92)° = (97, 93) = (e, €) = 1s.

Thus t < s. But
(91, 95) = (91, 92)" = (e,€) => gult and galt.

Thus ¢ is a common multiple of ord(g;) and ord(g2), which means s < ¢ since

s = LCM (ord(g;),ord(g2))-

Hence s = t and | ord(g1, g2)| = LCM (ord(g1),ord(g2)).

For the general case, suppose the result holds for
G1®G2@ - D Gpo1.

ButGi ¢ Ge® - - @G, =(G1&G2®---® Gp_1) ® Gy. So applying the previous argument, the
result holds for
GieGa®--- @Gy

by induction. O

Theorem 1.26
Let G and G2 be two groups. Let H; and Hs be normal subgroups of G and G respectively
then

Hy @ Hy <Gy ® Go.

Proof. Since H; is a subgroup of G; and H> is a subgroup of G, therefore H; @ H> is subgroup of
G119 Go.

Now let (hy, he) € Hy @ Hz and (g1, g2) € G1 ® Go, then

(91,92)(h1, h2)(g1,92) " = (g1h1, g2h2) (97, 95 1)
= (g1h19y ", g2hegy ') € Hy © Ho.

glhlgfl € Hy and gghgggl € Hy because H1 <G1and Hy <Gy. Thus H1 ® Ho <G Gy, O
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1.11 Internal Direct Product

Definition 1.23
Let (G, ) be a group and let (H, x) and (X, ) be two subgroups of G. Then G is said to be
the internal direct product of H and K (write G = H x K) if:

1. G={hxk|he H ke K}
2. HN K = {e} where e is the identity in G.
3. hxk=kxhforallh € Hand forall k € K.

\

Remark. If H, K < G, then
HxK>=H®K.

Example 1.11.1. Consider H = {0,2,4} and K = {0, 3}, show that G = Zg is the internal direct
product of H and K.

Solution 1. We check G = H x K, compute
G=HxK
={0,2,4} x {0,3}
={0+60,0+63,2+60, 2+63, 4460, 4 +6 3}
={0,3,2,5,4,1} = Zg.

2. HN K = {0}, 0 is identity of Zs.

3.Vae Hbe K, a+gb=0b+¢a.
H and K are subgroups of G = Zg. Thus G is the internal direct product of H and K. <

Example 1.11.2. Zg is internal direct product of Z, and Zs.
Solution The direct product of Z; and Z3 form a tuple,

Lo X X3 = {(x,y) |$ € Zs and yEZ;;}
= {(07 0)7 (07 1)7 (07 2)
(1,0),(1,1), (17 2)}

For all (a1,b1), (a2, ba), we define the product as
(a1,b1) - (a2, b2) = (a1 +2 ag, by +3 ba).

For example, (1,0) - (1,2) = (1 4+ 0mod 2,1 + 2mod 3) = (1,0). Compute the Cayley table for all
elements in Zy x Zs (it is actually a 6 x 6 Latin square)

ZQ X Zg
/ \
{(1,0)) {(0,1))
\ /
((0,0))
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: (0’ 0) (0’ 1) (07 2) (17 0) (17 1) (17 2)
(0,0) | (0,0) (0,1) (0,2) (1,0) (1,1) (1,2)
(0,1) | (0,1) 7(0,2) (0,0) (1,1) (1,2) (1,0)
(0,2) | (0,2) (0,0) (0,1) (1,2) (1,0) (1,1)
(1,0) | (1,0) (1,1) (1,2) (0,0) (0,1) (0,2)
(1,1) | (1,1) (1,2) (1,0) (0,1) (0,2) (0,0)
(1,2) | (1,2) (1,0) (1,1) (0,2) (0,0) (0,1)

Which is quite matches with the Cayley table of Zg.
Zg
/ \
(3) (2)
\ /
(0)
-10 1.2 3 4 5
0|0 1 2 3 4 5
111 2 3 4 5 0
212 3 4 5 0 1
313 4 5 0 1 2
414 5 0 1 2 3
515 0 1 2 3 4
In fact, Zy x Z3 is isomorphic to Zg. <

1.12 Finite Abelian groups

Theorem 1.27 Fundamental theorem of Finite Abelian groups

Every finite Abelian group is a direct product of cyclic groups of prime-power order. More-
over, the number of terms in the product and the orders of the cyclic groups are uniquely
determined by the group.

Since a cyclic group of order n is isomorphic to Z,. Then every finite Abelian group G is
isomorphic to a group of the form

Zp;n D Zp;l2 D---D Zka

where i’s are not necessarily distinct primes and the prime powers p
uniquely determined by G.

ny . n2 Nk
1 P2 ,...,pk are

Look at groups whose orders have the form p;, where p is prime and j < 4. There is one
group of order p;, for each set of positive integers whose sum is k (such a set is called a partition
of k); that is, if k can be written as kK = n; + ng + - - - + ny, where each n; is a positive integer, then
Ly @ Lz @ -+ & Zyne is an Abelian group of order k.
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Order of G | Partitions of k | Possible direct products of G
P 1 Ly,
P> 2 Ly
141 Z, ® L,
P’ 3 L3
1+2 Zp D Zp2
1+1+1 Zp ® Ly ® Ly
p* 4 Ly
1+3 Zp (&) Zps
242 sz &) sz
1+1+2 Ly ® Ly ® Ly2
1+1+1+1 Zy® Ly ®ZLy®ZLy

1.12.1

Greedy algorithm for an Abelian group of order p"

Here are the procedure to find all the possible abelian group of order p™. Note that p is prime.

1. Compute the orders of the elements of the group G.

2. Select an a; of maximum order and define G; = (a1). Seti = 1.
3. If |G| = |G|, stop. Otherwise, replace i by i + 1.
4. Select an element a; of maximum order p* such that

p" <|G|/|Gi-|

2 k—1

P, . ..,al" isin G;_1, and define G; = G;_1 x (a;).

P
and none of a;,a; ,a; ,..

5. Return to step 3.

In the general case where |G| = p]* py? ...p.", we simply use the algorithm to build up a

direct product of order p}?, then another of order py?, and so on. The direct product of all these
pieces is the desired factorization of G.

Example 1.12.1. Let G = {1,8,12,14,18,21, 31, 34, 38,44, 47, 51,52, 57, 64} under multiplication
modulo 65. Show that G is isomorphic to Zs ® Z4.

Solution Since G has order 16, we have

G = Ze
& Zioa takep =2,k =4
> 7o @ Ly Partitionsof k =1+ 3
= Zo2 @ Zo2 Partitions of k = 2 4 2
274D 7y
<
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Pseudocode 1: Greedy algorithm for an Abelian group of order p"

// Main body of greedy algorithm for finding Abelian group of order p".
1 function Main greedy_algorithm((G: FiniteGroup) — Product of CyclicGroups

2 @ < find_element_with max_order(G)
// Generated subgroup with first element a; from a.

3 H «+ <(I1>

4 141

5 while |H| # |G| do > Greedy search for all cyclic groups
6 max_cyclic_order = |G|/|H|

7 (ai) =]

8 while p* < max_cyclic_order do

k—1 k—1
9 ifal ¢ H then > Checkif al  already in previous H
k—1

10 ‘ (a;).push(al )

11 else

12 | continue

13 k—Fk+1

14 H «+ H x {a;)

15 | i i+l

16 | return H

// Compute the orders for all elements in group G.

17 function compute_orders(G: FiniteGroup) — orders

18 orders =[]

19 fora; € G do > elements in G
20 if a; == identity(G) then

21 | return1 > The order of identity element is one.
22 else

23 j<1

24 while a] # e do

25 L j+—j+1 > Find the order of each element.
26 orders.push(j)

27 | return orders

// Filter out a; with maximum order, return a list of tuple (a;,|[{a;)]).

28 function find element with max order(G: FiniteGroup) — Array<tuple(element, order)>
29 orders <— max_cyclic_order(G)

30 | returnzip(G, orders).filter((-,0) — o == Max(orders))

Example 1.12.2. Let G = {1,8,17,19,26, 28,37, 44, 46, 53,62, 64, 71, 73, 82, 89,
91,98,107,109, 116, 118, 127, 134} under multiplication modulo 135. Show that G is isomorphic to
L2 & Zs.

Solution Since G has order 24, and the prime factorization of 24 = 3 - 23. We have

G = Zoy
> 7o @ T
=13 @ Loz © Lo
= 73 ® Ly ® Lo
= Zzxa D Lo Since Zy, ® Zg = Zipq
=712 ® Zo

<

CHAPTER 1. GROUPS | 51



Tutorials

Exercise 1.12.1  Prove whether the following group G together with operation * is a group.

1. Let * defined on G = R by letting a xb = ab Va,b € R.
2. Let x defined on G = 2Z by lettinga*xb=a+0b Va,b € 2Z.
3. Let x defined on G = R* by letting a x b = Vab Ya,b € R*.

4. Let * defined on G = Z by letting a * b = max{a,b} Va,bc Z.

Exercise 1.12.2  Determine whether the given set of matrices under the specified operation,
matrix addition or multiplication, is a group.

1. All 2 x 2 diagonal matrices under matrix addition.
2. All 2 x 2 diagonal matrices under matrix multiplication.

3. All 2 x 2 diagonal matrices with no zero diagonal entry under under matrix multiplica-
tion.

4. All 2 x 2 diagonal matrices with all diagonal entries either 1 or —1 under matrix multi-
plication.

All 2 x 2 upper-triangular matrices under matrix multiplication.
All 2 x 2 upper-triangular matrices under matrix addition.

All 2 x 2 upper-triangular matrices with determinant 1 under matrix multiplication.

® N o @

All 2 x 2 upper-triangular matrices with determinant either 1 or —1 under matrix multi-
plication.

Exercise 1.12.3  Prove whether

=l

is a group under matrix multiplication.

ad — bec # 0, a,b,c,dEZ}

Exercise 1.12.4  Prove whether

=1

ad # 0, a,b,dEZ}
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is a non-abelian group under matrix multiplication.

Exercise 1.12.5 Prove whether

= ]

is an abelian group under matrix multiplication.

a #0, a,beZ}

Exercise 1.12.6  Let (G, %) be a group and suppose that

axbxc=e Va,b,ce(G.
Show thatb*c*a = e.

Exercise 1.12.7  Show that if every element of the group G is its own inverse, then G is
abelian.

Exercise 1.12.8  Show that every group with identity e and x - v = z for all z € G is abelian.

Exercise 1.12.9  Show that if G is a finite group with identity e and with even number of
elements, then there is an a # e in G such that a x a = e.

Exercise 1.12.10  Suppose G is a group such that

(ab)?> = a*b* Va,b € G.

Show that G is abelian.

Exercise 1.12.11  Find the order of the following cyclic groups.

1. The subgroup of U (6) generated by cos <2;r> + isin <2;> .

2. The subgroup of U(5) generated by cos <4‘§> +isin <4;> .

3. The subgroup of Z/47Z x 7/6Z generated by (1, 5).
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Exercise 1.12.12  Let a and b be elements of a group G. Show that if ab has finite order n,
then ba also has order n.

Exercise 1.12.13  Show that a group with no proper nontrivial subgroup is cyclic.

Exercise 1.12.14  Let GG be a nonabelian group with center Z(G). Show that there exists an
abelian subgroup H of G such that Z(G) C H but Z(G) # H.

Exercise 1.12.15  Find all subgroups of the following groups and draw the subgroups dia-
gram for the subgroups. Hence, list all orders of the subgroups of the given groups.

1. Z36

2. Zeo

Exercise 1.12.16

1. Find all the proper nontrivial subgroups of Zy x Zs X Zs.

2. Find all the subgroups of Zy x Z4 of order 4.

Exercise 1.12.17

1. Are the groups Zy x Z12 and Z4 x Zg isomorphic?

2. Are the groups Zg x Zig X Zg4 and Zy X Zy2 X Zag isomorphic?

Exercise 1.12.18  Find the conjugacy classes of dihedral group Ds.

Exercise 1.12.19  Show that a group that has only finite number of subgroups must be a finite
group.

Exercise 1.12.20  Find all cosets of the subgroup 4Z of Z.
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Exercise 1.12.21  Compute the quotient group Zj2/(2).

Exercise 1.12.22  Show that if H is a subgroup of index 2 in a finte group G, then every left
coset of H is also a right coset of H.

Exercise 1.12.23  Let ¢ : G — G be a mapping defined by
p(x)=2° Vered

where G = R\ {0} is a group defined under usual multiplication. Show that ¢ is a homomor-
phism, and hence find ker(¢).

Exercise 1.12.24 Let ¢ : G — G be a mapping defined by
¢(x) =5" Vo el

where G = R\ {0} is a group defined under usual multiplication. Show that ¢ is a homomor-
phism, and hence find ker(¢).

Exercise 1.12.25 Let ¢ : G — G be a mapping defined by
¢(x)=Tr Vred

where G = Z is a group defined under usual addition. Show that ¢ is a homomorphism, and
hence find ker(¢).

Exercise 1.12.26  Let G be a group and g an element in G. Consider the mapping ¢ : G — G
defined as ¢(z) = gzg~!. Show that ¢ is an isomorphism.

Exercise 1.12.27  Find ker(¢) for map ¢ : Z1o — Zgo such that ¢(1) = 8.

Exercise 1.12.28  Find ker(¢) for map ¢ : Z x Z — Z x Z such that ¢(1,0) = (2, —3) and
¢(0a 1) = (_L 5)

Exercise 1.12.29 Let ¢ : G — H be a group homorphism. Show that ¢(G) is abelian if and
only if
zyzr~ly~! € ker(¢) Vr,y € G.
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Exercise 1.12.30  Consider A the set of affine maps of R, that is

A={f:z—ax+bacR"becR}

1. Show that A is a group with respect to the composition of map.

2. Let
N={g:xz—x+bbeR}

Show that N <« A.

3. Show that the quotient group A/N is isomorphic to R*.

Exercise 1.12.31 Let G = S and let

H=1{e,(12)(34),(13)(24),(14)(23)}

1. Show that H is a normal subgroup of G.

2. Let H = {0 € S4|0(4) = 4}. Define o : H — Aut(H) by o(7) = oo~ ! for 0 € H. Prove
that
F X o H= 54.

Exercise 1.12.32  Find (up to isomorphism) all abelian groups of order 45.

Exercise 1.12.33  Show that any group of order p? is abelian.

Exercise 1.12.34  Let G be a group of order pg, where p and g are prime numbers. Show that
every proper subgroup of G is cyclic.

Exercise 1.12.35 If H, K < G, show that HN K < G.

Exercise 1.12.36 If N <« G and H < G, show that NH < G.

Exercise 1.12.37  If N1, Ny <1 G, show that N1 N Ny <1 G.

Exercise 1.12.38 If N <« Gand H < G,showthat HN N <« G.
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2

Rings

Ring is an algebraic structure which is a set of elements with two operations: addition and multi-
plication.

7

Axiom 2.1 Rings
A ring R is a set with two binary operation, addition (usually denoted by +) and multipli-
cation (usually denoted by ab), such that for all a, b, c € R.

1. Addition is commutative, a + b = b + a.
2. Associativity holds in addition, (a 4+ b) + ¢ = a + (b + ¢).
3. There is an additive identity Og. That is, there is an element Or € R such that
a+0r=a=0r+a
forall a € R.

4. There is an additive inverse —a € R such that
a+(—a) =0r = —a+a.

5. Associativity holds in multiplication, a(bc) = (ab)c.

6. Distributive law holds in R,
a(b+c¢) =ab+ ac

and
(b+ ¢)a = ba + ca.

Here are a few things you should take notes:

1. A ring is an Abelian group under addition, also having an associative multiplication that is
left and right distributive over addition.

2. Note that multiplication need not be commutative. When it is, we say that the ring is com-

mutative.

3. A ring need not have an identity under multiplication. A unity (or identity) in a ring is a

nonzero element that is an identity under multiplication.

4. A nonzero element of a commutative ring with unity need not have multiplicative inverse.

When it does, we say that it is a unit of the ring. Thus,  is a unit if 27! exists.

5. We follow the following terminology and notation. If  and y belong to a commutative ring

R and z is nonzero, we say that = divides y and write z|y, if there exists an element ¢ in R
such that y = xc.
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6. If x is an element from a group under the operation of addition and n is a positive integer,
nx means x + x + - - - + x, where there are n summands.
N—

n times

Example 2.0.1. The set Z of integers under ordinary addition and multiplication is a commutative
ring with unity 1. The units of Z are 1 and —1.

Example 2.0.2. The set M>(Z) of 2 x 2 matrices with integer entries is a noncommutative ring with
L |10
unity [ 0 1] .

Example 2.0.3. The set of all continuous real-valued functions of a real variable whose graphs
pass through the point (1, 0) is a commutative ring without unity under the operations of pointwise
addition and multiplication, that is,

(f +9)(x) = f(z) + g(z)

and

(fg)(z) = f(z)g(z).

2.1 subrings

Theorem 2.1 Subring test
A nonempty subset S of the ring R is a subring if S is closed under subtraction and multi-
plication, that is,

1. S+ 2.
2.a—beS Vabels.
3.abe S Va,beS.

Definition 2.1  characteristic of ring

The characteristic of a ring R is the least positive integer n such that nz = 0 for all z € R. If
no such integer exists, we say that R has characteristic 0. The characteristic of R is denoted
by char(R).

Example 2.1.1. S = {0, 2,4} is a subring of Zs.

Solution Using subring test, the subtraction and multiplication form a group in S.

—-({0 2 4 0 2 4
0(0 4 2 TO 0 0
212 0 4 210 4 2
414 2 0 410 2 4
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Thus S < Zs.

Theorem 2.2
Let a,b and c belong to a ring R. Then

1. a0 = 0a = 0.

(—a)(—b) = ab.
a(b—c¢) =ab—acand (b — ¢)a = ba — ca.

Furthermore, if R has a unity element 1, then (—1)a = —a.

SANERC LI N

Proof. We are going to prove (1), (2) and (3).

a(04+0) =a0 = a0+ a0 = al
= (—a0) + a0 + a0 = (—a0) + a0
=0+a0=0
= a0 = 0.

a0 =0=a(b+(-b)) =0
=ab+a(—-b) =0
= —(ab) + ab+ a(—b) = —(ab) + 0
= a(—b) = —(ab).

Theorem 2.3 1. A ring has unique unity.

2. If a ring element has a multiplicative inverse, it is unique.

CHAPTER 2. RINGS
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2.2 Quotient rings, Ideals

2.2.1 Ideals

Definition 2.2  Ideals
A subring A of a ring R is called an ideal if for every r € R and every a € A both ra and ar
are in A.

So, a subring A of a ring R is an ideal of R if
rA={ralac A} C A

and
Ar={ar|a€ A} C A

for all € R. Anideal A of R is called a proper ideal of R if A is a proper subset of R.

7

Lemma 2.1
Let I be a subring of a ring R. Then [ is an ideal in R if and only if multiplication

(a+I)b+1I)=(ab+1I)

is a well-defined operation on the cosets of I in R.

Proof. (=) Assume that [ is an ideal in R, and suppose thata; +1 = as + I and by + I = by + 1.
This implies that a; = a2 + k and b; = by + j for some ¢, j € I. Then we have

a1by = agbs + agj + kbs + kj.

Since [ is a subring of R, and therefore it closed under multiplication, as well as addition, and
kj € I. Since I is an ideal, asj € I and kby € I, and so asj + kby + jk € I.

Therefore, a1b1 € azby +1 and a1b; + I = agbs + I. Thus, the multiplication on the set of cosets
of I is well-defined.

(<) Assume that the indicated operation is well-defined. We need to show that for all r € R,
and forallz € I, wehaverz € I and xr € I. Sowe havexz +1 =0+ I = I. Hence

re+I=r+)(z+1)=C+0)0+1)=0+1=1.

Again we have 2r € I. Thus [ is an ideal in R. ]

Theorem 2.4 Ideal test
A nonempty subset A of a ring R is an ideal of R provided

1. A+# 2.
2. a —b € Awhenever a,b € A.

3. raand ar arein Aforalla € Aandr € R.
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Example 2.2.1. For any ring R, {0} and R are ideals of R. The ideal {0} is called the trivial ideal.

Example 2.2.2. For any positive integer n, the set
nZ = {0,£n,+2n,£3n, ...}

is an ideal of Z.

Solution We can show nZ < Z using ideal test.
1. Since 0 € Z, thenn -0 =0 € nZ # @.
2. For all a,b € nZ, we let a = nt; and b = ni, for t1,ts € Z. We have
a—b=nt; —nty =n(t; —ta) €
since t1 — to is also an integer.
3. Whenevera € Aand r € R, leta = nt’, t' € Z. We have

ar = (nt")yr =n(t'r) e nZ, trel.

and
ra =r(nt') = nrt’ = n(rt') = n(t'r) = ar € nZ.
Therefore nZ < Z.
<
Example 2.2.3. Let R be a commutative ring with unity and let a € R. The set
(a) ={ra|r € R}
is an ideal of R called the principal ideal generated by a.
Solution Using ideal test to check
1. Since R is aring, then Og € Rand so O = 0r - a € (a) # .
2. Forallb,c € (a),letb = r1a, c = roa, where 71,73 € R. Then
b—c=ria—rqa=(r; —ro)a € (a).
and 7y — o isin R.
3. Foralla € (a),r € R,weleta =1r'aand
ar = (r'a)r = a(r'r) € (a).
where r'r € R.
On the other hand,
ra=r(r'a) = a(rr’) = a(r'r) = ar € (a).
Therefore (a) is a subring of R.
<
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2.2.2 Quotient Rings

Theorem 2.5

Let R be a ring and let A be a subring of R. The set of cosets

is a ring under the operations

R/A={r+A|re A}

o (s+A)+(t+A)=s+t+A

o (s+A)(t+A)=st+A

if and only if A is an ideal of R.

Proof. Let R tobe aring, andlet A < R. For all s + A,t + A in R/A we define addition as

M(s+At+A)=(s+A)BE+A) =s+t+A

and multiplication as

Os+At+A)=(s+A) o+ A =st+ A

We want to show (R/A,H, ®) is a ring.

1. (Closureness) Suppose that s + A = s’ + Aand t + A =t + Aforall s, ¢',t,t' € R. First we

need to show

(s+t)+ A= (s +1t)+ A

We are going to express s, ¢ in term of §', ¢’ respectively.

s+A=§+A=>s—-5 €A

and

=s—5=a€A

Fmars] med

t+A=t+A=>t—-teA

stt=(m+5)+(ae+t)=a1+as+s+7,

=>t—t=a €A

S [Enrr] wmea

Summing up (V) together with (&) we have

Subtracting s’ + ¢’ on both side of the equation yields

a1 +as € A.

s+t—(+t)=a1+ay,=s+t—(s+t) €A

We have shown R/A closed under addition B, we continue to proof

st+ A =5t + A.

()

()
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Which is equivalent to show R/A closed under the multiplication ®. Applying the results
that we found from (), (&%) we have

st —s't = ajas + a1t + s'ag

Is a1t in A? Of course, since a1 € A,t' € R = a1t' € A< R. Soas s'as € A<R.

. (Existence of additive identity) For all s + A € R/A, there exists e + A € R/A such that

(s+A)HBH(e+A)=s+A=(s+e)+A=0+s+A
= s+e=s
=e=04.

Thus the additive identity is 04 + A.

. (Existence of additive inverse) For all s + A € R/A, there exists r + A € R/A such that

(s+AB@r+A)=0+A=(s+r)+A=0+4
=s+r=0
=71 =—5s.

Thus the additive inverse of s + Ais —s + Ain R/A.

. (Associativity of multiplication) For all s + A,t + A,u + Ain R/A, compute

(s+A)o[t+A)o(u+A)]=(s+A4) 06 (tu+ A)

s(tu) + A

(sthu+ A

[(St)-i-A] ©® (u+ A)
[(S—FA)@(t—i-A)]@(u-‘rA).

Associativity in ® holds.

. (Existence of unity) For all s + A € R/A, there exists ¢/ + A € R/A such that

(s+A)o(+A)=s+A=>s +A=5s5+A
= s’ =s
=¢e =14 €R.

The multiplicative identity is 14 + A in R/A.

. (Existence of multiplicative inverse) For all s + A € R/A, there exists r + A € R/A such that

(s+A)O(r+A)=1a0+A=>sr+A=14+A
=sr=14

=r=s1

The multiplicative inverse of s + Ais s7! + A in R/A, provided s~! exists in R.
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7. (Distributive Law) For all s + A, ¢ + A,u + Ain R/A, compute

(s+A)Ot+A)Bu+A)]=(s+A)O[(t+u)+ A
—s(t+u)+ A
=st+su+ A
= (st+A)+ (su+ A)
=(st+A)B (su+ A)
=+A)o(t+ABHGBS+AO U+ A

Distributive law holds in (R/A, 8, ®).

Therefore (R/A, B, ®) is a ring. O

Example 2.2.4. Z/AZ = {4Z, 1 +4Z, 2+ 47, 3+ AZ}

Solution The integers with multiple of 4 is
A7 ={...,—8,-4,0,4,8,12,.. .},
The left ideals are

1444Z ={...,—7,-3,1,5,9,13,.. .}

24447 =1{...,—6,-2,2,6,10,14,...}
3444Z =1{...,—5,—1,3,7,11,15,...}
A+44Z =1{...,—4,0,4,8,12,16,...} = 4Z

Definition 2.3 Prime ideal
An ideal [ in a commutative ring R is said to be prime if I # R and whenever ab € I, then
eithera € Torb e I.

Lemma 2.2
Let R be a commutative ring with unity, and I be an ideal in R. Then I is a prime ideal in R
if and only if R/I is an integral domain.

Proof. R/I will therefore be an integral domain and only if it has no zero divisors. This condition
is equivalent to the condition that

(a+0D)b+1)=1 <= a+I=1or b+I=1

Thus R/I is an integral domain if and only if ab + I = I implies thata+ 1 =l orb+ 1 = I or, in
other words, if and only if ab € I implies that a € I or b € I, which is to say that I is a prime ideal
in R. ]

[ Definition 2.4 Maximal ideal
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Anideal I in a ring R is said to be maximal if / # R and whenever J is an ideal such that
ICJCR

then/ = JorJ = R.

Lemma 2.3
Consider R is a ring with nonzero unity, and M is an ideal such that M # R. If R/M is a
division ring, then M is a maximal ideal.

Proof. Suppose I is an ideal such that M C I C R. Thenda € I s.t.a ¢ M. Thena+ M # 0+ M
and there exists b + M € R/M such that

(a+M)b+M)=1p+M = (g —ab) e M = ab+m =1p

for some m € M. Sinceab € Tandm € M C I. Also1g € I = I = R. Thus M is a maximal
ideal. O

Theorem 2.6
Let M be an ideal in a commutative ring R with identity. Then M is a maximal ideal if and
only if the quotient ring R/M is a field.

Proof. («<)If R/M is a field, then M is a maximal ideal by previous lemma.

(=) Since M # R, R/I is a commutative ring with 1z + R # Or + M. Take any nonzero
a+ M e R/M,a ¢ M and put

N:=Ra+M ={ra+m|reR,me M}

Note that Ra is an ideal and M is also an ideal (Ra = (a)). Thus Ra + M is ideal that include M.

Since M is maximal, this implies that N = R = 1g € N. ra+m = lg forsomer € R,m € M.
Compute

ra+m=1g=>ra+M=1gr+ M Since (ra — 1g) € M
= (a+M)(r+M)=1p+ M.

We can now see that a + M is actually a unit in R/M. Hence R/M is a field. O

Corollary 2.1
In a commutative ring R with unity, every maximal ideal is a prime ideal.

Proof. If I is a maximal ideal in R, then R/I is a field. Every field is an integral domain, so R/I is
also an integral domain, and I is a prime ideal. O
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2.3 Ring homomorphism

Definition 2.5 Ring homomorphism
A ring homomorphism f from a ring (R, ®, ®) to a ring (.S, H, [J) is a mapping from R to S
that preserves the ring additions (%, H) and multiplications (©, [J); that is,

fla®b) = f(a) B f(b)

and
fl@a®b) = f(a) B f(b)

A ring homomorphism that is one-to-one and onto is called the ring isomorphism.

Example 2.3.1. The map ¢ : Z — Z3 defined by
¢(x) =x (mod 3) VrelZ

is a ring homomorphism.

Solution Clearly, for all z,y € Z

¢(z+y) = (z +y) (mod 3) = (x mod 3) + (y (mod 3))

= o(x) +3 9(y)
and
¢(zy) = (zy) (mod 3) = (z mod 3) - (y (mod 3))
= o(x) -3 0(y)
This is an example of a map that respects both operations. <

Example 2.3.2. Consider the map ¢ : Zy — Zg, ¢(x) = 3z for all z in Z4. ¢ is a ring homomor-
phism.

Solution For all z,y € Z, we check that

é(z+y) = 3(x + y) (mod 6) = (3z mod 6) + (3y (mod 6))
= ¢(z) +6 &(y)

and
(zy) = 3(zy) (mod 6) = 9(zy) (mod 6) = (32 mod 6) - (3y (mod 6))

= o(x) 6 D(y)

this map preserves both operations. So ¢ is a ring homomorphism.

In our calculation, we can have used the fact that 3 = 9 (mod 6). The jump from 3 to 9 modulo
6 can be better seem in

3 (mod 6) = ¢(1) = ¢(1-1) = ¢(1) 6(1) = 3- 3 = 9 (mod 6).
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Example 2.3.3. Fora,b € R, let A(a,b) = M>(R) be defined by
a b
A(a,b) = [—b a] :
Let R = {A(a,b) | a,b € R} C M3(R). Then R = C.
Solution Let ¢ : R — C be defined by
¢(A(a,b)) =a+bi € C.

We show firstly that ¢ is a ring homomorphism.

For addition, we have

B(A(a,5) + Al d) = 6 (A(a + ¢, b+ d)
=(a+c)+ (b+d)i
= (a + bi) + (c + di)

— 6 (A(a,b)) + 6 (A(c, d)).

(1% 2[5 )
(K

¢
¢ (A(ac — bd, ad + bc))
= (a
=0

For multiplication, we have

#(A(a,b) + A(c,d))

+ bi)(c + di)
(A(a, b)) ¢ (A(c,d)) -

Now, ¢ is one-to-one and onto since ¢ (A(a,b)) = a+ bi = O0if and only if « = b = 0, and
Ker ¢ = {A(0,0)} is trivial. <

Example 2.3.4. Show that the equation 222 — 52% + 72 — 8 = 0 has no solutions in Z.

Solution Let ¢ : Z — Z3 be the natural homomorphism ¢(z) = x mod 3. Suppose that there is
an integer a € Z such that
a® —5a% +7a —8 = 0.

Then
0= ¢(0) = ¢(2a® — 5a% 4 Ta — 8) = 2¢(a)® — 5¢(a)? + Tp(a) —

Since —5 =7 = —8 = 1 (mod 3) in Zs3, we have
2¢(a)’ — 5¢(a)® + 7¢(a) — 8 = 2¢(a)’ + ¢(a)” + ¢(a) + 1
and thus 2b% + b2 + b+ 1 = 0, where b = ¢(a) in Z3.

However, one can easily check that no element b € {0, 1,2} in Zs is a solution to this equation.
Therefore there is no such integer a € Z to the original equation. <
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Example 2.3.5 (Tutorial). Show that the rings 27Z and 3Z are not isomorphic.

Solution Assume the contrary and let ¢ : 2Z — 3Z to be an isomorphism. Let us examine ¢(2).
Note that for some k € Z, ¢(2) = 3k. Since ¢ is a homomorphism,

d(k) = d(2+2) = ¢(2) + ¢(2) = 3k + 3k = 6k.
But ¢ is a ring homomorphism and
b(k) = $(2-2) = 6(2) 6(2) = (3k) (3K) = k™.

This implies that 6k = 92 = k=0o0rk= %

For k = 0 = ¢(x) = 0 is not one-to-one and not onto. Also, k = % ¢ 7, and thus ¢ cannot be
an isomorphism. <

Example 2.3.6. Determine all ring homomorphism from Z to Zg.

Solution Since Z is generated from 1 by addition and subtraction, if a ring homomorphism f :
Z — Zg, then for any a € Z, we have

f(a) =am
where m = f(1). Then f is linear, so
fla)+ f(b) =am+bm = (a+b)m = f(a+b) Va,becZ.
So f is a ring homomorphism if and only if

0 = f(ab) — f(a)f(b) = abm — (am)(bm) = ab(m — m?)

for any a,b € Z.

In particular, taking a = b = 1, we need to find m such that 0 = m — m? (mod6). Working
modulo 6 one by one

0-02=0-0=01-12=1-1=0, 2-22=92-4=4+#£0
3-32=3-9=-6=04-4>=4-16=0, 5-52=5-25=2#0

The possible values of m are 0, 1, 3 and 4. So the homomorphisms are as follow

) =0 (mod6), Va € Z.

a) = a (mod6), Va € Z.

a) = 3a (mod6), Va € Z.
)

a) = 4a (mod6), Va € Z.

Theorem 2.7 The first isomorphism for rings
Let f be a ring homomorphism from ring R ro S. Then the mapping from R/ker(f) to f(R),
given by

r+ ker(f) — f(r)
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[ is an isomorphism. In symbols, R/ker(f) = f(R).

Proof. Defineamap f: R/K — Im f by

fla+ K)=f(a) Va€R,a+K € R/K.

1. Since f is well defined, so

2. f is injective since

a+K=b+K=a-be K

fla+ K)=f(b+K) = f(a) = f(b)
= f(a—0) =0s
=a—-beK
=a+K=b+K.

3. fissurjective. For all f(a) € Im f,3a + K € R/K such that f(a + K) = f(a).

4. fis homomorphism,

Thus f : R/K = Im f as rings.

fla+ K+b+K)

Example 2.3.7. Let ¢ : Z x Z — Z3 be the ring homomorphism defined by

#((a,b)) = bmod 3.

Then ker(¢) = Z x 3Z and (Z x Z)/(Z x 3Z) is isomorphic to Zs3, which is a field. Thus Z x 3Z is a

maximal ideal of Z x Z.
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2.4 Polynomial rings

Definition 2.6
Let R be a commutative ring. We define

Rlz] = {rpa™ + rp_12™ '+ -+ iz + 19 |7 € R}. (2.1)

The letter = here can be thought of a variable or just a placeholder. Either way the familiar
structure allows us to add, subtract and multiply these as we do traditional polynomials even if
the ring were some strange abstract entity.

2.5 Factorization of polynomials

Theorem 2.8 Division algorithm
Let R be a ring with identity and f(z), g(z) € R[z] with g(x) # 0. Then there exists unique
polynomials ¢(z) and r(z) in R[x] such that

f(@) = q(x)g(x) + r(z) (22)

and deg(r) < deg(g). r(z) = 0 if there is no remainder.

Proof. The basic idea is to formalize the process of long division in an inductive sense. We omit the
details here. They’re boring here. O

Example 2.5.1. In Z3 we can divide 222 + 1 into z* + 223 + 22 + 1. Then we have

e 428 420+ 1= (22 +1)(222 + 2+ 2)

Theorem 2.9  Factor theorem
Let F'be afield, a € F and f(x) € F[z]. Then a is a root (or zero) of f(x) if and only if z — a
is a factor of f(z).

Proof. (=) Assume that a € F is a zero of f(x) € F[z]. We wish to show that x — «a is a factor of
f(z). To do so, apply the division algorithm. By division algorithm, 3 unique polynomials ¢(x)
and r(z) such that
f(x) = (z — a)q(z) + r(z)
and the deg(r) < deg(x — a) = 1, so r(z) = ¢ € F, where c is a constant. Also, the fact that a is a
zero of f(z) implies f(a) = 0. So
f(x) = (z —a)q(z) + ¢ = 0= f(a) = (a —a)q(a) +c.

Thus ¢ = 0, and = — a is a factor of f(x).

(<) On the other way, we want to show O
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Definition 2.7 Algebraically closed
Given F a field, we call F' algebraically closed if every f € F[x] such that deg(F') > O has a
rootin F.

Example 2.5.2. Show that 22 4 3z — 4 € Z12[z] has 4 roots.
Solution We list down all the values of f(z) = 22 + 3z — 4 forx =0,1,...,11,

x 0[1[2[3[4]5 10 [ 11
2243z —4(mod12) |[8|0[6|2|0/0|2|6|0[8] 6 | 6

(o)
N
o]
\O

which now we can see: 22 + 3z — 4 has 4 zeros in Zis[x]. Thus, a polynomial of degree n can
have more than n roots in a ring. The problem is that Z5 is not a domain: (z +4)(z — 1) = 0 does
not imply one of the factors must be zero. <

Example 2.5.3.  Show that the polynomial 223 + 32 — 7z — 5 can be factored into linear factors in
ZH [l’]

Solution We can use synthetic division,

2 3=-8 —T= 6
-2 —10 —6 | -1
2 -10=1 —6
—4 6 -2
2 -3 |
Thus, 223 + 322 — T2 — 5 = (z + 1)(z + 2)(2x — 3) in Zq1[z]. <

2.5.1 Irreducibility tests

There are various methods to check if a polynomial in Z[z] is irreducible in Q[z].

Theorem 2.10 Rational root test
Let
f(z) = ant™ 4 ap_12" 7V 4+ - 4+ a1z + ag ()

be a polynomial with integers coefficients. If » # 0 and the rational number /s (in lowest
terms) is a root of f(x), then r|ag and s|ay,.

Proof. Plug = = r/s into (7 ) and equating with zero. The equation is now

r\n ryn—1 r
an (*) + ap—1 <*) + - ta; <7)+a020.
S S S

Again multiplying s on both sides

ant™ 4 1" s+ -+ ars" 'z + ags™ = 0.
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Factoring r out and moving ags" to the right-hand side. We obtained

1

T(anrn_l +ap 1" 254+ ars" x) = —aps".

Since ged(r, s) = 1, thus r|ag and similarly s|a,. O

Example 2.5.4. The polynomial f(z) = 22* + 2® — 2122 — 142 + 12 is reducible in Q[z].

Solution If /s is a root of f(x), where r|12 and s|2. Thus the possible roots are

+1, £2, £3, +4, 16, +12, %, i;

In fact, f(z) = (z+3) (z — 3) (222 — 4z — 8) € Q[z]. <

Example 2.5.5. The polynomial g(z) = 2% + 422 + 2 — 1 is irreducible in Q[z].

Solution The possible roots are {—1, 1}. However
g1)=1+4+1-1=5 and g(-1)=-1+4—-1-1=1

So g(x) has no root and deg g(z) = 3. Thus g(z) is irreducible over Q[z]. <

Theorem 2.11 Mod p Irreducibility test B
Let p be a prime and let f(x) € Z[x] with degree 1 or greater. Let f € Z,[z] obtained by
reducing all of f(x)’s coefficients mod p. Then if

deg(f) = deg(f) (23)

and f is irreducible over Z, then f(z) is irreducible over Q.

Proof. Assume that f(x) = p(z)g(x) in Z[z]. Since ¢ : Z[z] — Z,[z] defined by ¢f(z) = f(x)isa
ring homomorphism. So

f(z) = p(z)q(x) = p(x)q(2).

If p 1 ag, then p does not divide the leading coefficients of p(z) and ¢(z). Thus deg p(x) = deg p(x)
and deg g(z) = deggq(x). O

Example 2.5.6. The polynomial f(r) = 2% + 8z2* + 322 + 4x + 7 is irreducible in Q.
Solution We define ~
flx) =2+ 22 +1 € Zy[z].
By rational root test, the only possible root is 0.1 from R but it is not an inetger. There are several

quadratic polynomials in Zy[z] such as

x2+x+1, :1:2+1, :c2+:v, z2.
Since 22 + 1, 22 + z, 2 both have roots, they cannot be factor of f. The only possible factor of f is
22 + 2 + 1. Thus
P2+ 1= (2 + 2+ 1) (23 +az? + bz +0).
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Equating coefficients of both sides, we have

1+a=0
l1+a+b=0
a+b+c=0
b+c=0
lc=1

On solving yields ¢ = —1 = 1(mod 2), b = 0 and ¢ = 1 but b + ¢ # 0 and is contradiction. So f(x)
does not has a quadratic factor. It means that f(z) is irreducible in both Zs[z] and Z. So f(x) is also
irreducible in Q[z]. <

Theorem 2.12 Eisenstein’s criterion
Let f(z) = ap + a1@ + a2x® + - - - + a,a™ € Z[z] \ {0}. If there is a prime number p such that
p1{a,, butpla,_1,...plas and p?|ag. Then f(z) is irreducible over Q.

Proof. Suppose that f(z) is reducible over Q then

and g(x), h(z) are nonconstant polynomials.

Let
f(x) = apa™ + ap_12" '+ + a1z + ao,

g(fL‘) =bz" + brflxr_l + -+ bix + bo,
h(z) = csx® + Co1° Vo 4 ez + oo

Since plag = boco == p|bo or p|co, and p? { ag. This implies that p divides only one of them. Assume
that p|byp and p t ¢, then
p’ao = b()Cl + blco.

Since plboci and p t co = p|b1. Assume that p|b; V0 < i < m for some m < r. Then

plam = Z bic; = plbmco = p|bm.
1+j=m
J<s

By mathematical induction, p|b,. Thus p|a, = b,cs. This contradicting the fact that f(x) is re-
ducible. ]
Example 2.5.7. zY + 5 is irreducible in Q[x] with p = 5.

Example 2.5.8. z!7 + 62!3 — 152* + 322 — 92 + 12 is irreducible in Q[x] with p = 3.

Example 2.5.9. 2" + 5 is irreducible in Q[z] for all n > 1. There are irreducible polynomials of
every degree in Q[z].
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Corollary 2.2
For any prime p, the p-th cyclotomic polynomial

Op(z) =P +a2P 24+l

is irreducible over Q.

Proof. Let ¢ = €2™/™. Then (,(?,...,(" are the n-th roots of unity. They form the vertices of a
regular n-gon in the complex plane. If gcd(a, n) > 1 then (* is a root of unity of order n/ gcd(a, n) <
n, but if gcd(a,n) = 1 then ( is not a root of lower order, and in this case we call (* a primitive n-
th root of unity. We define the n-th cyclotomic polynomial ®,,(x) to be the monic polynomial of
degree ¢(n) whose roots are the primitive n-th root of unity:

()= ] (=-¢. (2.4)
=1
(a,n

a
ged(a,n)=1

The first few cyclotomic polynomials are as follows:

n=
1 Oy (z)=x—1

2 Py(z) = +1

3 P3(r) =22+ +1

4 Py(z) =2%+1

5 Ps(x) =at+ a3+ +2+1

6 Pg(x) =22 —x +1

7 Pr(z) =2+ 2+t + 23+ 22+ +1

8 Pg(z) =2t +1

9 Pg(z) =28 + 23 4+ 1

10 Pp(x) =t -2+ 22—z +1

11 Or(z) =0+ 2%+ a8+ 4 Pt 2t 2?41

12 Qpp(r) =a* — 22 +1

13 | 3(z) =224+t + 2042 4+ 2" b St 4t 42 o+ 1
14 Pry(r) =2 -2+ a2t -2+ 2?2 -~ +1

15 Pp(x) = 2"+ 2% -t + 23— +1

16 Pig(x) = 2% + 1

Let p denote a given prime number. For any polynomial f(z) with integral coefficients let f(z)
be the polynomial whose coefficients are the residue classes (mod p) determined by the coefficients
of f(z). Thus the assertion f = g means that there is a polynomial h(x) with integral coefficients
such that f(z) = ph(x).

[ Lemma 2.4 ]
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(Schénemann, 1846) Let A(z) be a monic polynomial with integral coefficients, for instance

n
Alx) =2" +ap 12" 4+ +ag = H(a: — ;).
1=1

Let p be a prime, and put

Then C = A.

Proof. Let oy () denote the k-th symmetric function of «;. When oy, ()P is expanded by the multi-
nomial theorem, all coefficients except the extreme ones are divisible by p. That is,

Uk(al, a9, ... ,Ozn)p — ak(o/f, Ozg, ce ,aﬁ)
p
is a symmetric polynomial in the o, with integral coefficients, and hence by the symmetric function
theorem the quantity must be a rational integer. O
Lemma 2.5

Put f(x) = 2™ — 1. Then f is a squarefree if and only if p { n.

Proof. By previous lemma we can see that if p { n. Then ged(f, f’) = 1, and hence that f is square-
free. On the other hand, if p|n, say n = mp for some integer m, then

F=@i=1p

and hence f is not squarefree.

Let ®,(z) denote the n-th cyclotomic polynomial. Since ®,,| f, it follows from the above that if
p 1 n, then ®,, is also squarefree. O

Theorem 2.13
(Kronecker, 1854) The polynomial ®,,(x) is irreducible over Q.

Proof. Suppose that A and B are monic polynomials with rational coefficients such that ®,, = AB,
and suppose also that deg A > 0. We know that A and B have integral coefficients. Let Z denote
the roots of A. Let C' be the monic polynomial whose roots are the numbers ¢? for ¢ € Z. Here p is
an arbitrary prime not dividing n. Our first step is to show that A = C.

Since the map ¢ — (P merely permutes the roots of ®,,, we know that C|®,,. Let G = ged(B, C).
Then G|B and G|C. But A = C by previous lemma, and hence §2|E§ . But ®,, is squarefree, by

previous lemma. Hence G = 1, so G = 1, and consequently C|A. But C and A have the same
degree, so in fact A = C.

Now let ¢ be aroot of 4, and ¢’ aroot of ®,,. Then there exists a positive integer a, gcd(a,n) = 1,
such that ¢’ = (% We factor a, a = pips . .. pg. Since ( is a root of A, it follows from the argument
above that (P! is also a root of A. Then by a second application of the above argument, we see that
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¢P1P2 is also a root of A. Continuing in this manner, we deduce that (' is a root of A. Since this is
valid for every root ¢’ of ®,,, we conclude that A = ®,,. Hence ®,, is irreducible. O

O]

Theorem 2.14
Let F be a field and let p(x) € F[z]. Then (p(z)) is a maximal ideal in F'[z] if and only if p(z)
is irreducible over F.

Proof. Suppose (p(x)) is a maximal ideal in F'[z]. We know that p(z) # 0 and p(x) is not a unit since
neither {0} nor (1r) = F[z] is a maximal ideal in F[z]. Let

p(x) = g(x)h(z)

be a factorization. Then (p(x)) C (g(z)) C (Flz]) and since (p(x)) is maximal we either have
(g(z)) = (p(x)) or (g(z)) = F[z]. In the first case we get O

Theorem 2.15 Fundamental Theorem of Algebra
Every nonconstant polynomial in C[z] has a root in C.

Remark. The field C is algebraically closed.

Corollary 2.3
A polynomial is irreducible in C[z] if and only if it has a degree 1.

Proof. All linear equation with degree 1 only have one root in R. O

Corollary 2.4
Every nonconstant polynomial f(xz) of degree n can be written in the form

clx—ar)(zx—az)...(zr—ap)

for some c, ay,as, ..., a, € C. This factorization is unique except for the order of the factors.

Proof. By the fundamental theorem of algebra,

f(z) = (riz + s1)(rox + s2) ... (rpx + sp)

=rire...rp(z+ 817“1_1)(36 + 827"2_1) (e snrgl).

Since f(x) has n unique roots, factorization is also unique. O

Lemma 2.6
If f(x) is a polynomial in R[z] and a + bi is a root of f(z) in C, then a — bi is also a root of

f(@).
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Proof. Let z = a + bi and the conjugate Z = a — bi. Define a map ¢ : C[z] — C[z] by ¢f(z) = f.
Bijective is trivial in ¢, e.g. ¢(f + g) = f + gand (fg) = f g since

(a+ bi)(c+ di) = (a+ bi) (c+ di).

If f(z) has a root 2 then f(x) will has a root z. If coefficients of f(x) are all real numbers, then
f(z) = f(z). Thus f(x) has a root z. 0
Theorem 2.16

A polynomial f(x) is irreducible in R[z] if and only if f(x) is a first-degree polynomial or
f(z) = ax® + bz + c with b? — 4ac < 0.

Proof. In Clz],
f@)=clx —a)(x—a2)...(x —ayp).

If a; = ¢+ di,a; = c — di for some 1 < j < n. The product of the conjugates are
(z—a;)(z —aj) = (v —c—di)(z — c+ di) = 2% — 2cx + * + d* € R[z].

Thus we can pair them and so f(z) can be split by irreducible polynomials whose degree is either
1or2.

Now we knew every irreducible polynomial has a degree 1 or 2. When its degree is 2, then
f(z) =az® +bx+c Va,bceR (%)

We now continue to work on the “formula” to solve z. Completing the square on ()
z? + bx + by’ (X i =0
2a 2a)

L b\? b — 4dac
T =
2a 4a2

ar’+br+c=0=a

s b . b? — dac
a‘;‘ PR —_—
2a 2a
—b+ Vb2 —4ac
== 5 , a#0
a

Now we can take a look on determinant A = b% — 4ac. If A < 0, the two roots will be in C \ R, else
the two roots are in R. (Either A > 0 or A = 0). Hence the first-degree polynomial or quadratic
polynomial is irreducible in R[z]. O

Corollary 2.5
Every polynomial f(z) of odd degree in R[z] has a root in C.

Proof. Consequently, we can tell if a polynomial in R[z] or C[z] is irreducible without any elaborate
tests. O
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2.6 Integral Domains

Let R be a commutative ring. A zero divisor is a nonzero element a € R such that
ab =0 (2.5)

for some nonzero b € R. The most familiar integral domain is Z. It is a commutative ring with
unity one. If a,b € Z and ab = 0, then either a = 0 or b = 0.

r

Definition 2.8
A ring with unity 1 having no zero divisors is an integral domain.

Lemma 2.7
Fields are integral domain

Proof. Let F be a field. We want to show that F' has no zero divisors. Suppose ab = 0 and a # 0.
Then @ must has an inverse a~! such that a1 ab = ¢! - 0 = b = 0. Therefore, F has no zero
divisors, and so F'is an integral domain. O

Lemma 2.8
If R is an integral domain, then the characteristic of R is either 0 or a positive prime.

Solution Suppose not, suppose R has characteristic n = ab with 1 < a < b < n. Then

(1R—|--"—|—IR)(1R—|—~-'+1R):ablR:anZO.

TV
a times b times

Since R is an integral domain, it is either a - 1z = O or b- 1g = 0. This is contradicts with our
assumption that n is not prime. <

Definition 2.9
If F is a field, then the only ideals are {0} and F itself.

Proof. Let F be a field, and let I C F be an ideal. Assume I # {0}, and find « # 0 € I. Since F'is a
field, x is invertible; Since I is an ideal, 1 = 2! - x € I. Therefore I = F. O

Example 2.6.1. The extended ring
Q[V2] = {a+bV2|a,be Q}

is a field and that every nonzero element has a multiplicative inverse.

Solution This is clearly a ring. To show that every nonzero element has a multiplicative inverse.
Consider a + bv/2 # 0 € Q[v/2]. The multiplicative inverse is

1
a+bv2
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Then multiplying top and bottom by conjugate, we have

a— b2 a— b2

(a+bv2)(a —bv2) a?—2b%
Now we want to show a? — 2b% # 0.

Ifa=0and b # 0orifa+# 0and b = 0, then a® — 2b? # 0. Since a® — 2b? # 0, the only other
possibility is a, b # 0.

Thus, a® = 2b*> witha, b # 0. We may assume that a and b are integers — in fact, now we can see 2
divides 2b?,502 | a? = 2| a. So a = 2c for some integer c. Plugging in gives 4c? = 2b%> = 2¢% = b,

It follows that every nonzero element of Q[v/2] is invertible, so Q[+/2] is a field. <

Example 2.6.2 (Non-example). M(Z) = { [CCL Z]

S RIE T

from M(Z), and compute the matrix product
1 0[/(0 O 00
an=o o[V o] =0 o =

A, B are zero divisors but none of them are zero. Thus M(Z) is not an integral domain. <

a,bc,de Z} is not an integral domain.

Solution Choose

Theorem 2.17
A finite integral domain is a field

Proof. Let D be a finite integral domain. Since D is an integral domain, then D is a commutative
ring with unity, and hence we need to show that D is a field. In order to do this, we want to show
VYa #0 € D, Ja~! € D such that

a-a_lzlpza_l'a.
Without loss of generality, we let

D = {a,a*d?,...,a"}

where a # 0 for some ¢ € N. Consider two elements a’, @/ from D, we have
ai=d =d7 =1p

=ad 7 =1p
1_ i—j-1

=a  =a
=Sa-at=d"7= 1p.
and the multiplication is commutative, therefore D is a field. ]
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Remark.
if Zy, is a field => Z,, has no zero divisors.

= 7y, is an integral domain.

= |Zy,| = p is prime and is finite.

2.7 Principal Ideal Domain

Definition 2.10
An integral domain R is called a principal ideal domain (or PID) if every ideal in R is
principal.

Example 2.7.1. The integers Z and polynomial rings over fields are principal ideal domains.

Theorem 2.18
If F is a field then F[x] is a PID.

Proof. We know F[x] is integral domain since F is an integral domain. Let I be an ideal of F'[z].
Case 1: If I = {0} then I = (0) and we are done.

Case 2: If I # {0} let g(x) be a nonzero polynomial of minimal degree in I (which exists by
well-ordering). If g(z) is constant then g(z) = « € F and then I = F = (a) because for any r € F'
we have

r=ra"la € (a).

Suppose then that g(x) is not constant, we claim I = (g(z)). Since g(z) € I we have (g(x)) C I. We
claim I C (g(z)). Let f(z) € I. By the division alogrithm, we can write

f(x) = q(x)g(z) + r(z)
with 0 < deg(r(z)) < deg(g(x)). Since
r(z) = f(z) —q(z) g(x)

we have r(z) € I and the fact that g(z) is a nonzero polynomial of minimal degree implies that
r(z) = 0and so f(z) = ¢(z) g(z) = f(x) € {9()). ]

2.8 Unique Factorization Domain
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Definition 2.11
An integral domain D is a unique factorization domain (UFD in short) if

1. Every nonzero element of D thatis not a unit can be written as a product of irreducibles
of D, and

2. The factorization into irreducibles is unique up to associates and the order in which
the factors appear.

Theorem 2.19
Every PID is a UFD.

Proof. Let R be a PID and suppose that a nonzero element a of R can be express in two different
ways as a product of irreducibles. Suppose

a=pip2---pr anda=qiq2---qs

where each p; and g, is irreducible in R, and s > r. Then p; divides the product ¢, ¢2, - - ,¢s and
so0 p1|q; for some j, as p; is prime. After reordering the ¢; we can consider pi|gi. Then ¢ = u1 p
for some unit u; of R, since ¢; and p; are both irreducible. Thus

pip2 - Pr = U1P1G2 " " (s

and cancelling p; on both side
P2 Pr=1u1q92 - - (s.

Continuing this process we reach

1l =wuo... % Qrg1---Qs-

Since none of the ¢; is a unit, this means that » = s and pips - - - p, are associates of gi¢2 - - - ¢, in
some order. Thus R is a unique factorization domain. O

Theorem 2.20
Every field is a UFD.

Proof. Every field F is a UFD because it is PID = it is an integral domain and every nonzero is a
unit, and it contains no prime. O

2.9 Euclidean Domains

Definition 2.12
An integral domain D is called a Euclidean Domain if there is a function d (called the mea-
sure) from the nonzero elements of D to the positive integers such that

1. d(a) < d(ab) for all nonzero a,b € D; and
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2. If a,b € D,b # 0, then there exists elements ¢,r € D such that

a=0bqg+r

where r = 0 or d(r) < d(b).

Example 2.9.1. The ring Z is a Euclidean domain with d(a) = |a.
Example 2.9.2. Let F be a field. Then F'[z] is a Euclidean domain with d(f(z)) = deg f(x).

Example 2.9.3. Gaussian integers Z[i] is a Euclidean domain with

d(a + bi) = a® 4+ V°.

Theorem 2.21
Every Euclidean domain is a PID.

Proof. Let E be a Euclidean domain. Consider an ideal [ of E. If I = {0}, then I = (0).

Let I # {0}. Then N = {d(x) |z € I,z # 0} is a nonempty set of nonnegative integers; and so,
by the well-ordering principle it has the least element.

Let a € I,a # 0 such that d(a) is the least element of N. i.e. d(a) < d(x) for all nonzero x in I.
We want to show I = Fa. Since a € I, it follows that

Fa C 1.
Let b € I. Since FE is a Euclidean domain, there exist ¢, r € F such that
b=aq+r, wherer=0ord(r)<d(a).

If r # 0, then r = b — ag € I shows that d(r) € N; and since d(r) < d(a), this contradicts the
minimality of d(a) in N. Therefore, r = 0 and so b = aq € Fa. Thus I C Ea and hence I = Fa. [

Tutorials

Exercise 2.9.1  For each of the following, decide whether the indicated operations on the set
will form a ring. If a ring is not formed, state the reason why this is the case. If a ring is formed
state whether the ring is commutative, whether it has unity, and whether it is a field.

1. nZ, under the usual addition and multiplication.
nRT, under the usual addition and multiplication.

nZ x Z with addition and multiplication by components.

L

nZ x 27 with addition and multiplication by components.
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5. {a+ bV5 ]| a,b € Q} with the usual addition and multiplication.

6. {ri|r € R} with the usual addition and multiplication where i* = —1.

Exercise 2.9.2 Leta = v/5and Z[a] = {a + ba + ca? | a,b, ¢ € Z}. Prove whether Z[a] is a
subring of R.

Exercise 2.9.3  Let X be some arbitrary set, and P(X) be the set of all subsets of X. Define
operators on P(X) as follows, where a, b in P(X):

a+b=(aUb)\ (anb)

and
ab=anNb.

Show that P(X) is a commutative ring.

Exercise 2.9.4 Let A be theset A = {a + bi | a,b € Q} where i> = —1. Here,
(a+bi)+ (c+di)=(a+c)+ (b+d)i

and
(a + bi)(c+ di) = (ac — bd) + (ad — be)i.

Show that A is a field.

Exercise 2.9.5  Show that the rings 27 and 3Z are not isomorphic.

Exercise 2.9.6  Show that a ring R has no nonzero nilpotent element if and only if 0 is the
only solution of 22 = 0 in R.

Exercise 2.9.7  Show that if R is a ring with unity and N is an ideal of R such that N # R,
then R/N is a ring with unity.

Exercise 2.9.8  If F'is a field, show that (F'\ {0}, -) is a group.

Exercise 2.9.9  Show that in a field F, the only ideals are F' and {0}.
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Exercise 2.9.10  Show that each homomorphism from a field to a ring is either one to one or
maps everything onto 0.

Exercise 2.9.11  Find the characteristic of the following rings:

1. 27Z.
2. Zs x 37.
3. Z5 X Z5.

Exercise 2.9.12  Show that the matrix E i] is a zero divisor in M(Z).

Exercise 2.9.13  An element a of a ring R is idempotent if a?> = a. Show that a division ring
contains exactly two idempotent elements.

Exercise 2.9.14 If A and B are ideals of a ring R, then the sum A + B of A and B is defined
by
A+B={a+blac Abe B}.

1. Show that A + B is an ideal of R.
2. Show that A C A+ B.

Exercise 2.9.15 If A and B are ideals of a ring R, then the product AB of A and B is defined

by
AB = {Z aibi
=1

1. Show that AB is an ideal of R.

aieA,bieB,neZ+}.

2. Show that AB C (AN B).

Exercise 2.9.16  Find ¢(x) and remainder r(z) as described by the division algorithm so that
f(x) = g(z)q(z) + r(x)

with r(z) = 0 or of degree less than the degree of g(z).
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1. f(z) = 2% + 32° + 422 — 3x + 2 and g(v) = 22 + 22 — 3 in Z;[x].

2. f(z) = 2% — 22* + 3z — 5 and g(z) = 22 + 1 in Zq1[z].
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3

Fields

3.1 Extenstion Fields

3.1.1 Simple Extension

Definition 3.1

Let E be an extension field of a field " and let a € E. We call an element a algebraic over F
if a is the zero of some nonzero polynomial in F[z]. If a is not algebraic over F), it is called
transcendental over F.

Example 3.1.1. C is an extension field of R.

C

|
R

The imaginary number i = /-1 is said to be algebraic since 2> + 1 = 0 € R[z]. While 7 is
transcendental since it is not a zero in R[z].

Theorem 3.1

Let K be an extension field of ', and u € K is an algebraic element over F'. Then there exists
a unique monic irreducible polynomial p(x) in F[z] that has u as a root. Furthermore if u is
aroot of g(z) € F[z], then p(z) divide g(x).

Proof. Notice thatu € K is algebraic over F if and only if there is a nonzero polynomial f(x) € Fx]
such that f(u) = Ok.

Let S be the set of all nonzero polynomials in F[z] that have u as a root, then S is nonempty
set. By well-ordering principle, Ip(x) € S such that p(z) has the smallest degree in S.

Suppose that f(z) € F[z] with f(u) = Og. By division algorithm,
f(@) = p(x)q(z) + r(2)

with deg p(z) > degr(x) or r(z) = 0.

If r(z) #0,
f(@) —p(x)q(z) = r(z) = fu) —p(u)q(u) = r(u) =
This contradicting the fact that p(z) is the smallest polynomial. Thus r(x) = 0 and p(z) divide f(z).

xr) =
And now if we let p(z) and ¢(x) be the smallest polynomial. Then, p(x)|q(x) and ¢(z)|p(x) implies
that p(z) = q(x). O
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Remark. The p(x) is called the “minimal polynomial of u over F".

Example 3.1.2. R is an extension field of Q and v/3 € R is algebraic, then

p(z) = > -3¢ Q[z]

Example 3.1.3. R is an extension field of Q and v/3 + v/5 € R is algebraic, Then
p(x) = 2* — 162% 4+ 4 € Q[z].
Solution Letz = 3+ 5 € R, then

2=3+2V15+5= 22 —-8=2V15
= (2> -8)?=4-15
=2t —1622+4=0

Thus p(z) = 2* — 1622 + 4 € Q[z].

Theorem 3.2
Let K be an extension field of ' and v € K is an algebraic element over I’ with minimal
polynomial p(z) of degree n, then

1. F'[u] is a field isomorphism of F'[z]/p(x).
2. {1,u,u?, ..., u" 1} is a basis of the vector space F(u) over F.

3. |F(u): F| =n.

Proof. 1. Since F'(u) contains F' and u, so F'(u) contains every element of the form
bo + bru + bou® + -+ + byu'  Vb; € F.

We again define a function ¢ : F[z] — F(u) by

Then ¢ is ring homomorphism.

Note that ker ¢ = (p(z)) where p(z) is the minimal polynomial of u over F. By the first iso-
morphism theorem, F[z]/p(z) = Im ¢. Since p(x) is irreducible, the quotient ring F'[x]/(p(z))
is a field and Im ¢ is also a field.

Note that p(c) = ¢ Ve € F and ¢(z) = u. Thus F C Imy and u € Im¢. By definition of
simple extension, F'(u) = Im ¢.

. Since F(u) = Imp, Vw € F(u),3f(z) € F s.t. f(u) = w. If deg f(x) > n. By division
algorithm, we have

f(z) = p(z)q(x) +r(z)
Ifr(z) =0, f(u) = p(u)q(u) =0 = w.
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Otherwise, if r(z) # 0, then

with deg r(z) < n. Thus
F(u) = Span{1,u,u?, ..., u" " '}.

3. Letco + cru+ cau? + - - + cpqu™ 1 = 0. If 3¢y, € F s.t. ¢, # 0. Then p(x) is not the minimal
polynomial of u over F. Thus ¢; = 0¥¢; € F. Hence, we can say that {1, u, u?,. .. u" 1} is
linearly independent and it is also a basis of F'(u) over F' = |F'(u) : F| = n.

[
Example 3.1.4. Q[v/3] is isomorphic to Q[v/3]/(z? — 3)

Example 3.1.5. If v and v have the same minimal polynomial p(x) in F[z], then F'(u) is isomorphic
to F'(v). For instance,

Q[v3] = Q[-V3].

Leto : F' — E be an isomorphism then we again define 5 : F'[z] — E[x] by for ap+ a1z +-- -+
anz™ € F[z]. We can write

o(ap + a1z + -+ apz™) = o(ap) + o(arz) + - - - + o(apz™) (3.1)

and & is also isomorphism.

Corollary 3.1

Let o : ' — E be an isomorphism of fields. Let u be an algebraic element in “some” exten-
sion field of F' with minimal polynomial p(z) € F[z]. Again we let v be an algebraic element
in some extension field of E with minimal polynomial op(z) € E[x]. Then o extends to an
isomorphism of fields ¢ : F'(u) — E(v) such that

7(u) =v and &(c) =o(c) Vece F.

Proof. By previous theorem, ¢ : F[z|/ (p(x)) — F(u) and ¢ : E[z]/ (op(z)) — E(v) are isomor-
phism where ([f(2)]) = f(u) and &([g(2)]) = g(v)-
Furthermore, we let £ be the surjective isomorphism

§: Elz] = Elx]/(op(x))

defined by &(g(x)) = |g(x)|.
Note that
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Since o, @ and i are surjective, so is the composite function.

ker (&(0)) = {f(z) € Flz]| o f(v)
={f(z) € Flz]|of(z) € (o f(2))}
= (p(z))

I
(an)
—

erF
el

By First isomorphism theorem,

F(u) = Fla]/{p(x)) =° E(v)
Since 0([f(z)]) = o f(v). Note that

0(z) =0 1p-v=1y -v=10

so we have the following situation

F(u) +—— Fla]/(p(x)) —2— E(v)

0

Fu) ——— [f(@)] —2— of(v)
c - ] —— ()

The composite function § o p~! : F(u) — E(v) is an isomorphism that extends ¢ and maps u
to v.

F g FE
c c
3 £

F(u) —2 Flal/(p(e)) —2 Ela]/{op(@) —2— E(v)

By First isomorphism thm.

O]

Example 3.1.6. % — 2 is irreducible in Q[z] by Eisenstein’s criterion. /2 € R is a root of it. Verify
that v/2w is also a root of 2> — 2 in C where

—14+V3i
=Ty

is a complex cube root of 1.

Solution Let o be the identity function from Q to Q. By applying the previous corollary, we have
Q(V2) = Q(Vaw)

such that 7(V/2) = v/2w. And now (v/2w)? = 2w® = 2. <
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3.1.2 Algebraic Extension

Definition 3.2  Algebraic extension
An extension field K of a field F is said to be an algebraic extension of F' if every element of
K is algebraic over F'.

Example 3.1.7. C is an algebraic extension of R. Va + bi € C, where a,b € Rand 7 = /—1. We
have
(z +a+bi)(z+a—bi) =22 + 2az + a® + b2

Thus a + bi is a root of 22 + 2az + a2 + b2 = 0.

Theorem 3.3
If K is a finite-dimensional extension field of F, then K is an algebraic extension of F.

Proof. Let {V4,Va,...,V,} be the basis of K over F. Forall u € K, {1,u,u?,...,u"} is linearly
dependent. That is,

Juk € K s.t.u” = Span{1,u,u?, ..., u"} = co + cru+ cou® + - - + cp_uF Tk > 1).

k k—1

Thus u is a root of f(x) = 2" — ¢j_1u""" — - -+ — ¢, this implies K is an algebraic extension. O

In fact, a simple extension is an algebraic extension if u is algebraic. If extension field K con-
tains a transcental element u, then K must be infinite dimensional over F.

Non algebraic = Infinite dimension

Note that F'(u) denote the intersection of all subfields of K that contains both F'and u. Itsaid to be a
simple extension of F. If uq, u, . .., u, are elements of an extension field K of F'. Let F'(u,...,up)
denote the intersection of all the subfields of K that contain F' and every u (known as generalized
simple extension); F'(u,u1, ..., uy) is said to be a finitely generated extension of F.

Theorem 3.4
If K = F(uy,us,...,uy,) is a finitely generated extension field of F' and each w; is algebraic
over F, then K is a finite-dimensional algebraic extension of F.

Proof. Note that if u, v is algebraic over F, then v is algebraic over F'(u). Thus
|F(u,v) : F(u)| - |F(u) : F| < oo = |F(u,v) : F| = |F(u,v) : F(u)|-|F(u) : F| < o0.
By mathematical induction, we have
|F(ui,ug, ... up) : Flug,ug, ..o ytp—1)| ... |[F(u1) : F| < o0

which is also finite. O
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Corollary 3.2
If L is algebraic extension of K and K is an algebraic extension of L. Then L is an algebraic
extension field of F'.

Proof. Yw € L, 3f(x) € K[z] s.t. f(w) =ao+ aw+ -+ + apw™.

Note that F'(ag, a1, . . ., ay) is finitely generated extension of F' and all a;’s
are algebraic. Thus it is finite dimensional algebraic extension of F'. Since w is algebraic over
F(ao,a1,...,ay). So F(ag,a1,...,a,) is finite dimensional extension of ' = w is algebraic over
F'. Thus L is an algebraic extension of F'. ]

Remark. Algebraic subfield E of C over Q is called the field of algebraic numbers. Where E is an finite-
dimensional algebraic extension over K.

T
o

e 1 denote algebraic extension over Q, e.g.: V/2,v/3,i,. . ..

e 7 denote non-algebraic extension.

Corollary 3.3
Let K be an extension field of F' and let £ be the set of all elements of K that are algebraic
over F'. Then F is a subfield of K and an algebraic extension field of F'.

Proof. We only need to show that E is a field. Let u,v € F, note that F'(u,v) is finitely gener-
ated extension of F, so F is algebraic extension. E is closed under subtraction and multiplication.

Moreover v~ ! is algebraic over F. Thus E is a subfield of K. O
Example 3.1.8.

Qi —i) = Q(7)
Example 3.1.9.

Solution
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Example 3.1.10. Every finite-dimensional extension is also finitely generated. If {ui,uo,...,un}
is a basis of K over F. This implies F'(u1,ug, ... ,u,) C K and K C F(uy,us,...,uy,). Thus,

K = F(uy,ug,...,u,) = Span{uy, ug, ..., un}.

Example 3.1.11 (Non-example).
Q(V3,V5) # Q(V3)

Solution For the sake of contradiction, consider Q(v/3,v/5) = Q(v/3), then
VE=a+bV/3, Va,beQ
Altering this equation by moving a to left-hand side, then squaring both sides. We obtain
(V5 —a)? = (bV3)? =5-2V5a+a® = 3b?

5+ a? — 3b?

However, when a = 0, we have 5 = 3b%2. Which is a contradiction. <

3.2 Splitting Field

In last chapter we had discussed about the integral domain. Suppose polynomial f(x) has degree
n. Then f(z) has at most n roots in any field. Suppose that K contains fewer than n roots of f(z).
It might be possible to find an extension field of K that contains additional roots of f(x).

Definition 3.3  Splitting field
If Fis a field and f(z) € F[z], then an extension field K of F is said to be a splitting field
(or root field) of f(x) over F provided that

o f(z) splits over K, say
fl@)=clx—uy)...(x—up) (3.2)

e and
K = F(uj,ug,...,up). (3.3)

smallest field

Example 3.2.1. If f(z) = 2* — 22 — 2 = (2? — 2)(2% + 1) in Q[z]. Then
Q(\/i> _\@7 ia _Z) = Q(ﬂa Z)

is a splitting field of f(x) over Q.
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3.3 Finite Fields

Theorem 3.5
Let R be a ring with identity. Then

1. The set
L= {k-1g|k € Z}

is a subring of R.
2. If R has characteristic 0, then B is isomorphic to Z.

3. If R has characteristic n > 0, then 3 is isomorphic to Z,.

Proof. We prove each of the statements listed above.

1. First of all, we use subring test to check if °B is a subring of R.

{a-lR—b-lR:(a—b)-lRefp
a-1p-b-1lg=ablpeP
so ‘B is a subring of R.
We now prove (2), (3) at once, We consider a map f : Z — R defined by
fn)=n-1gp VneZ.
Then f is homomorphism because
fln+m)=(n+m) 1g = f(n)+ f(m)

and the kernel is
ker f={ne€Z|n-1r =0g}.

By the first isomorphism theorem, Z/ker f is isomorphic to R.
e If R has a characteristic 0, then ker f = (0) = Z = R.

e If R has a characteristic n, then ker f = (n) = Z/(n) = R.

O
Corollary 3.4
Every finite field has characteristic p for some prime p.
Proof. Since finite field is integral domain, it must has characteristic prime p. O

Remark. 1. The converse of it is false. There are infinite fields of characteristic p (i.e. Zy[z]).
B={k-1r|k €Z}

is called the prime subfield of K and is contained in every subfield of K. Which means every field of
characteristic p must contains Zy.
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2. The number of elements in a finite field K is called the order of K.

3.3.1 Order of finite field

Theorem 3.6
A finite field K has order p", where p is the characteristic of K and n = |K : Z,)|.

Proof. Let K be a finite dimensional extension of Z,. Let n = |K : Z,|, then {ui,us,...,u,} is a
basis of K.

Vk € K, k is represented uniquely be
k= ciur + coug + - + crtin.

There are precisely p™ distinct linear combinations of the form. Thus |K| = p". O

Lemma 3.1 The Freshman’s dream
Let R be a commutative ring with identity of characteristic p, where p is a prime. Then for
every a,b € R and for all positive integer n we have

(a+b)P" =aP" +b". (3.4)

Proof. We will use the induction on n.

Assume n = 1, we expand (a + b)” with binomial theorem.

p
(a+b)f=>" <Z>a”kb’“ =af + <]19>aplb+---+ ( P 1>ab”1 + b,
p—

Note that

P\ P k<porl<k<p.
k)T kR T =

This implies that p divide (}) = (£)a?~*b* = 0 (mod p). Thus (a + b)P = a? + bP. We are done for
base case.

Assume that it holds for all less than n.

(a+0)P" = ((a+bP)"
— (a? + 07"
_ ap)pn—l + (bp)pn—l
Therefore the theorem is true for every positive integer n. Now we are done. O

Theorem 3.7 Existence of finite field
Let K be an extension field Z,. For all positive integer n, K has order p" if and only if K is
a splitting field of 2" — x over Z,,.
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Proof. (=) Let f(z) = 2P" — x over Z,. Then
fla)=pta?" "t —1=-1

and so f(x) and f'(x) are relatively prime = f(x) is separable. Then f(z) has p™ distinct roots
in splitting field. Let ¢ be any nonzero element of K. Let {c1,c2,...,cpn_1} be all the nonzero
elements of K and let

U = cicg -+ - Cg.

Note that {cc1, cca, . . ., cci } are all distinct and nonzero elements of K. Thus

{cci,cea, ... cep} ={c1,c2, ..., cpnr}
and
n__ n
CClL-CCy - CCpn_] =C1 - Cy- - Cpn_q = P L= —c=0.
So all nonzero elements of K consisting of the p™ distinct roots of 2?" — x over Z,,.

(«<=) On the other hand, let E be the subset of K consisting of the p" distinct roots of 27" — z.
We want to show F is a subfield of K.

Forall a,bin E, a?" = a and b*" = b. So
(a+b)P" =a” 4+ =a+b=a+bc E

(ab)?" =a”" " =ab=abe E
(—a)P" = (-1)""a”" = —a=ac E
and

(@ = @) =at

Clearly 0,1 € E. Since K is a field, the rest of axioms are true. Since K is splitting field of
""" — 2, K C E. Hence K = F and |K| = |E| = p". O

3.4 Galois Theory

The classical question of algebra : Whether or not there were formulas for the solution of higher
degree polynomial equations. There are no formula for the solution of all polynomial equations of
degree n when n > 5.

Galois theory had a profound influence on the development of later mathematics for beyond
the scope of the original solvability problem. Why? Because his theory connecting the field exten-
sions with groups.

Definition 3.4 Galois group

Let K be an extension field of F'. An F-automorphism of K is an isomorphism o : K — K
that fixes F' elementwise. That s, o(c) — ¢,Vec € F.

The set of all F-automorphisms of K is denoted Galp K and is called the Galois group of K
over F'.

Theorem 3.8
If K is an extension field of F, then Galr K is a group under the operation of composition
of functions.
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Proof. We need to show that the function composition from a group:

[Closedness]: Vo, 7 € Galp K, ocorT(c)=cVeceF.

[Associativity]: Associativity holds because of function composition’s property.
[Existence of identity]: Vo € Galp K, 00T =700 =0.
[

Existence of inverse]: Vo € Galp K, 0 !(c) = ¢Vc € F. So 0! is the inverse in Galp K. [

Theorem 3.9
Let K be an extension field of F'and f(z) € F|x]. If u € K isaroot of f(z) and o € Galp K,
then o (u) is also a root of f(z).

Proof. Takeau € K, f(u) =0 = o(f(u)) = o(0) = 0.
Since 0 € Galp K, o0 (f(u)) = f (o(u)) =0. O

Remark. Every root of p(z) in K is the image of v under some automorphism of Galp K.

Theorem 3.10
Let K be the splitting field of some polynomial over F' and u,v € K. Then there exists an
o € Galp K such that o(u) = v if and only if u and v have the same minimal polynomial.

Proof. (=) Note that if K is splitting field of f(x) with deg f = n. Then
|K : F| <nl = K is algebraic over F.

So v has a minimal polynomial ¢(x) over F.

By previous theorem, p(v) = 0 and ¢(u) = 0. These imply p(x)|¢(x) and ¢(z)|p(z) and hence
p(z) = q(z). We are done for this direction.

(<) On the other hand, in simple extension, we can extend an isomorphism o : F' — F to
7 : F — F such that 5(u) = v and 5(c) = ¢ for all constant ¢ € F.

Since K is splitting field of some polynomial over F, which is also a splitting field of F'(u)
and F(v). We can extend an isomorphism & to an isomorphism ¢ : K — K. If o = 1, then
o € Galp K. O

Example 3.4.1. Given that o € Galg C, find (7).

Solution By previous theorem,
o(i) = {i,—i}.

Thus Galp K = {1, 0} is a group of order 2 and hence Galg C is isomorphic to Zs. <

Theorem 3.11 Galois group of finitely generated extension

Let K = F(uq,us,...,uy)be an algebraic extension field of . If c o7 € Galp K and o(u;) =
7(u;) foreachi =1,2,...,n. Theno = 7.

In other words, an automorphism in Galp K is completely determined by its action on
UL, U,y . .+« Up.
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Proof. Let B =01 o7, then

1

o tor(u) =0t

oo(u;) = u;.
Let v € F'(u;), then there exists a constant ¢; € F' such that

n—1

co+cur+ -+ e =w = pv) = .

Again we let w € F'(u1, ug), then there exists a constant ¢; € F' such that

1

co+cug+ - Fepmuy T =w = f(w) =w.

Repeating this process, we conclude that for allv € K, f(v) =v = = 1. Thus 7 = 0. O

Example 3.4.2. Consider o € Galg Q[v/3,v/5]. We let two actions
7(V3)=—-V3, 7(V5) =5

and
a(V3)=V3, a(V5)=-V5
and defined § = a o 7.

Then Galg Q[v3,V5] = {1, 7, , B} such that

1 T « I}
V3 V3| V3| V3 | V3
V[ V5| V5 | V5| V5

Note that 7, a, 3 both have an order 2. Thus Galg Q[v/3, /5] = Zs x Zs.

Corollary 3.5

If K is splitting field of a separable polynomial f(z) of degree n in F'[z], then Galp K is
isomorphic to a subgroup of S,,.

Proof. Let ui,us,...,uy be distinct roots of f(x). Then K = F(uj,us,...,u,) and let
U= {ul,uQ, .o .,un}.

For all permutation o € Galp K, V1 < i < n, o(u;) = u; for some j.

Now define a function § : Galp K — S,, defined by 0 : o — 0 o 1. 0 is well defined. Note that
coly=71oly=o0=r1

by previous theorem. Thus 6 is injective, and 6 is homomorphism.

By the first isomorphism theorem, we say that

Galp K = Im 6 = a subgroup of S,,.
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Definition 3.5 Intermediate field
Let K be an extension field of F'. A field E such that

FCECK

is called an intermediate field of the extension. Clearly that Galg K = Galr K.

Theorem 3.12
Let K be an extension field of F. If H is a subgroup of Galr K, let

Ey={ke K|o(k) =k for every o € H}.

Then Ej is an intermediate field of the extension K. The field E is called the "fixed field”
of subgroup H.

Proof. It is clear that F' C Ey C K. So we only want to show that Ey is a subfield.
Leta,b € H. For all o € H, we have

ola+b)=o0c(a)+o(b)=a+b
o(ab) = o(a)o(b) = ab

0(0x) =0k, 0(lk) = 1k

o(—a) = —o(a) =

(
o(a ') =(o(a) ! =
Thus Ey is a subfield of K.

Example 3.4.3. From previous example,

Q C Q[V3] C Q[V3,V5].
And Galy 5 Q[v3,v5] = {1,a}, and Galg Q[v3, V5] = {1,7,a, 8}.

Example 3.4.4. Galy, Q[v3,V/5] = {1,a} is the fixed field of Q[v/3] = {1, a}, where

a(V3) = V3,a(V5) = —V5.
Solution For all a; € Q. Compute

a(ao—l—al\/g—l-am/g—i—ag\/ﬁ) = ap + a1V3 + asV'5 + azV15
<= ao+a1\/§—a2\/5—a3\/ﬁ:ao+a1\/§+a2\@+a3\/ﬁ
<= ag\f5—|—a3\ﬁ:()

<= a2+a3\/§:0

Since asag e Q = —V/3 € Q, which is a contradiction.
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Example 3.4.5. Galgr C = {1,a}, and a(a + bi) = a — bi = a + bi = b = 0. Thus fixed field of
Galg C is the field R.

Remark. The ground field F' need not always be the fixed field of the group Galp K.

Example 3.4.6. /2 is the root of 2> — 2 = 0. So V/2 — {+/2, V2w, v/2w?}, where w is the cube root
of unity.

However, v/2w, v2w? ¢ Q[v/2]. Yo € Galg Q[v/2], o(v/2) = V/2. Thus o = 1. The fixed field of
Galg Q[¥2] is Q[¥2).

3.4.1 Fundamental Theorem of Galois theory

Definition 3.6 Galois correspondence

Let K be a finite-dimensionalextension field of I, and let S be the set of all intermediate
fields. Again we let 7" be the set of all subgroups of the Galois group Galp K.

Define a map ¢ : T'— S by this rule. For each intermediate field £,

¢(E) = Galg K. (3.5)

This function ¢ is called the Galois correspondence.

GalKK — K

g s

GalFK —— F

Example 3.4.7.
Q = Galg Q(V3,V5) = {1,7,0, }

Lemma 3.2
Let K be a finite-dimensional extension field of F'. If H is a subgroup of the Galois group
Galp K and E is the fixed field of H, then K is simple, normal, separable extension of E.

Galp K K

H— FEg

Proof. Since K is finite-dimensional extension field, so K is algebraic over F. Let il € K and
p(z) € E[z] be minimal polynomial of , and Vo € H, o(4l) is some root of p(z).

Therefore, 4l has a finite number of distinct images under automorphisms in H, said
U=wuj,ug,...,us € K, wheret < deg p(x)

If o € Hand u; = 7(4) with 7 € H, then o(u;) = o o 7(4l).
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Since o is injective, so
H
e {ul,ug,... ,ut}

which {u1, ug, ... u:} is image of 4. And u; = 7(4l) for some 7 € H. is injective

{U1,UQ,...,ut} ‘—> {ul,uQ,...,ut}
permutation o

Every automorphism in H permutes w1, u2, ..., u;. Let

fl@)=(z—u)(z —u2)...(x —u)
Since all u;’s are distinct, f(z) is separable.

Now we claim that f(x) € E[x]. Note that o f(z) = f(z) for all o € H. All coefficients of f(z)
is fixed by o € H. Thus f(x) € Elx]. Since u = u; is a root of f(z) € E[z], u is separable over
E. = K is separable extension of £.

From the previous theorem, K = E(V) forsome V € K. Let g(z) = (x —v)(z —v2) ... (z — vy)
where {v; = v,v9,...,vs} are images of o € H. Similarly, g(xz) € E[z] and K = E(v) is splitting
field of g(x). Therefore K is normal extension of E. O

Definition 3.7 Galois extension
If K is a finite dimensional, normal, separable extension field of the field F', we say that K
is a Galois extension of F' or that K is Galois over F.

Corollary 3.6
Let K be a finite dimensional extension field of F'. Then K is Galois over F' if and only if F
is fixed field of the Galois group over F.

Proof. (=) By previous theorem, E = F'. Thus F is fixed field of the Galois group over F.

(<) By lemma, K is simple, normal, separable extension of F'. O

Theorem 3.13 Fundamental theorem of Galois Theory
If K is a Galois extension field of F,

1. There is a bijection between the set S of all the intermediate fields of the extension
and the set T" of all subgroups of the Galois group Galr K, given by assigning each
intermediate field F to the subgroup Galg K. Furthermore

K : E| = | Galg K]

and
|E:F| :\GalFK:GaIEK\.

2. Anintermediate field F is normal extension of F'if and only if the corresponding group
Galg K is a normal subgroup of Galp K.

Proof. 1. By theorem, fixed field of Galg K is E. By theorem we have

|Galp K| = |K : B
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Similarly,
|Galp K| = |K : F)|.

Infact|K : F|=|K : E||E : F|. Thus

]GalFK]:|GalEK\-|E:F|:>|E:F\:]GalFK:GalEK].

2. («=) Assume first that Galg K is a normal subgroup of Galg K. If p(z) is an irreducible poly-
nomial in F'[z] with a root u € E, we must show that p(x) splits in E[z].

Since K is normal over F. We know that p(z) splits in K[z]. So we know that p(z) also
splits in K[z]. So we need to show that each root v of p(z) in K is actually in E. There is an
automorphism o € Galr K such that o(u) = v by theorem. So Galp K = |K : F| = E.

K=F(u) "= Fu) =K

F—1 L F

Now if 7 is any element of Galg K, then normality implies
Too=co71 forsome 7’ € Galg K.

Since u € E, we have

7(v)

|
= 9 9 =

So Galg K fixes other roots for all v € E. Thus E is normal extension of F.

(=) Assume that E is normal subgroup of F. Then there exists a surjective homomorphism
of groups 0 : Galp K — Galp E whose kernel is Galg K. Then Galg K is normal subgroup
of Gal F K.

Therefore by First isomorphism theorem, Galp E = Galp K/ Galg K.

Lemma 3.3
Let K be a finite-dimensional normal extension field of F' and F an intermediate field which
is normal over F. Then there is a surjective homomorphism of groups

0:Galp K — Galp E

where kernel of 6 is Galg K.

Proof. Let o € Galp K and an u € E. Then u is algebraic over F' with minimal polynomial p(z).

Since E is normal, all roots of p(z) are in E. Since o(u) is also root of p(z), o(u) € E. Therefore

o(E)C E Vo € Galp K.
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Thus we can restrict o to E and ¢ o 1 is an F-isomorphism that is £ = ¢(F). Hence,

|E: F|=|o(E):F|.

Since K is splitting field over F', K is also splitting field over E. Vo € Galp E. o can be
extended to an F-automorphism in Galp K. Its kernel consists of the automorphisms of K whose
restriction to E is the identity map as Galg K. ]

Example 3.4.8. Let K be the splitting field of 2® — 2. Note that
QCQV2C K
and |Q[v/2] : Q| = 3. K is Galois extension of Q such that
|Galg K| = |K : Q)

and Galg K is isomorphic to a subgroup of S3.

3<|K:Q<6=3<|K:Q[V2]| |Q[V2]:Q|<6
— 3<3|K:Q[V2]] <6
— 1< |K:Q[V2] <2

We must have |K : Q| = 6 and Galg K = Ss.

Q[w] is the splitting field of z? + = + 1 and hence Q[w] is normal and separable. Thus K is
Galois over Q.

3.5 Solvability by Radicals

We shall assume that all fields have characteristic 0. A “formula” is a specific procedure that starts
with coefficients of the polynomial f(z) € F[z] and arrives at the solutions of equation f(z) = Op
by using only the field operations (+r, —r, X p, =) and the extraction of roots (such as {/-).

In this context, an n-th root of an element c in field F is any root of the polynomial " — cin
some extension field of F'. If that “formula” really exists, then there exists an extension field K of

F' such that
splitting field of ™ —c splitting field of 2 —c/

F/Q\F’/;\/Q\‘K

Example 3.5.1. The solutions of 2> + 3z + 2 = 0 € Q[z] are

V1+v2+V/-1-v2| |0/ 1+V2+ @)V -1-v2| |(@)V-1+V2+wd/-1-+2

[ Definition 3.8 Radical extensions
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A field K is said to be a radical extension of a field F' if there is a chain of fields
F=FKChC..CF,=K

such that foreachi =1,2,...,t. F; = F;_1(u;) and some power of u; is in Fj_; (uf(l € Fi_1).
The equation f(x) = O is said to be solvable by radicals if there is a radical extension of F
that contains a splitting field of f(z). If not, then f(x) is not solvable by radical.

Definition 3.9  Solvable groups
A group G is said to be solvable if it has a “chain” of subgroups

G=Go>pGi>...0Gp1>G, = (e)

and G;_1/G; is abelian.

Example 3.5.2. Every abelian group G is solvable. G O (e) and G/ (e) = G is abelian.
Solution Since S3 > ((123)), and

(12)((123)) = {(12),(13),(23)}
((123)) (12) = {(12),(23),(13)}

Theorem 3.14
For n > 5 the group S, is not solvable.

Proof. For the sake of contradiction, suppose that S, is solvable and that
Sn=Gy2G 2---DG=(1).

Let (r st) be any 3-cycle in S,, and let «, 3 be any element of {1,2,...,n} other than r,s,t (they
always exist since n > 5). Since S, /G is abelian, by theorem of dihedral group,

(tas)(srB)(tas)  (srB) ™ = (tas)(srB)(tsa)(spr)
= (rst) e Gy

Note that the cycle ((r st)) € G1, and G definitely contains all the 3-cycles since G /G5 is abelian,
repeating upper process, Gz also contains ((r st)).

In conclusion, Vi € {1,2,...,n}, G; contains all the 3-cycles. This contradicting the fact that
S, is solvable. ]

Theorem 3.15
Every homomorphic image of a solvable group G is solvable.
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Proof. Let G be a solvable group. Then there exists a chain of groups
G=Gy2G;...2G, = (e)

such that for all 4, G;_1 > G; and G;_1/G; is abelian.

Consider f is the homomorphism of G. Then f(G;) is also a group, and the chain of group is
now

f(G) = [(Go) 2 f(G1) ... 2 f(Gn) = (e)

and aba=1b~! € G; whenever a,b in G;_;. This implies

flaba™07h) = f(a)f(0)f(a) "' f(0) ™" € f(Gi) Va,be Gioy

and
Ve,d € f(Giz1),3a,b€ Gi—1  s.t. f(a) =cand f(b) =d.
So we have
F@)f(0)f(a)" f(b) ™ = cde™Hd ™ € f(Ga).
Therefore f(Gi—1)/f(G;) is abelian. Hence f(G) is solvable group. O
Definition 3.10

A generator of this cyclic group of n-th roots of unity in K is called a primitive n-th root of
unity.

This definition states that ( is a primitive n-th roots of unity iff ¢,¢?, ..., (" are the n distinct
n-th roots of unity.

Example 3.5.3. Consider 2% — 1 € Q[z]. The 4-th roots of unity in C = {1, —1,i,—1} = (i). i and
—1 are primitive 4-th root of unity in C.

Example 3.5.4. According to De Moivre’s theorem,

cos| — ) +2smn | —
n n

is a primitive n-th root of unity in C.

Theorem 3.16
Every homomorphic image of a solvable group G is solvable.

Proof. Let G be a solvable group. Then there exists a chain of groups
G=Gy2G12...2G,=(e)

such that G;_1 > G; and G;_1 /G, is abelian Vi.
Let f be the homomorphism of G, then f(G;) is also a group. The chain of group is now

f(G) = f(Go) 2 f(G1) 2 ... 2 f(Grn) = (e)
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and Va,b € G;_,, we have aba~'b~! € G;. And
flaba™ 071 = f(a) f(0)f(a) "' f(b) " € F(Gi).
And for all ¢, d in f(G;), there exists some a, b € G; such that f(a) = cand f(b) = d. So
F@) fO) f(@) " f(0)™! = cde™ M7 € f(GY).
Thus £(Gi_1)/f(G;) is abelian. Thus f(G) is solvable group. 0

Lemma 3.4
Let F'be a field and ¢ a primitive n-th root of unity of . Then F' contains a primity d-th root
of unity for every positive divisor d of n.

Proof. Because ( is a primitive n-th root of unity of F, thatis, (" = 1p. If ( has order n and n = dk,
¢* has order d.

Note that {¢*, ¢?*, ..., ("} are all distinct and roots of 2¢ — 1. Thus ¢* is a primitive d-th root
of unity. O

Example 3.5.5. There is no formula (involving only field operations and extraction of roots) for
the solution of all 5th-degree polynomial equations.

Solution Consider f(x) = 22° — 10z + 5 € Q[x]. We check the zeros of the derivatives.
' d, 5 4 .
fi(x) = %23: — 10z +5=102" —10 == roots are £ 1, =i
d2

(z) = @2905 — 10z 4+ 5 = 402° = the only root is 0.

—22° — 102 + 5

10 |

AN

N RV

—10 |

Figure 3.1: By graph, f(x) = 22° — 10z + 5 has 3 real roots.

Note that by Eisenstein’s criterion, 5|10, 5|4, but 5 { 2 and 5% 1 5. So f(x) is irreducible in Q[x].
If K is splitting field of f(x) in C. Then

| Galg K| = [K : Q]
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Since K is Galois field of Q.
If r is any root of f(z), then

K :Qf =K :Q(r)]-1Q(r) : Q[ =5[K : Q(r)].

Thus |K : Q| is divisible by 5. By Cauchy’s theorem, there exists sigma € Galg K with ord(o) = 5.
Note that Galg K C S5 and the only elements of order 5 are (5-cycles), the 5-cycle is in Galg K.
The complex conjugation a + bi — a — bi induces an automorphism on K since o € Galg C, 0|k €
Galg K.

Since 0|k interchanges the two nonreal roots of f(x), implies that Galg K contains a transpo-
sition (2-cyle). Note that the only subgroup of S5 that contains both a 5-cycle and a transposition
is S5 itself. So Galg K = S5 = f(z) is not solvable by radicals.

<

Tutorials

Exercise 3.5.1 Let E be an extension field of a field F' and let & € E be transcendental over
F'. Show that every element of F'(«) is not in F' is also transcendental over F'.

Exercise 3.5.2  Let F be a finite field of characteristic p. Show that every element of F' is
algebraic over the prime field Z, < F.
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