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Groups

Definition 1.1 Closure
Let G be a set. A binary operation on G is a function that assigns each ordered pair of
elements of G an element of G. This condition is called closure.

The most familiar binary operations are ordinary addition, subtraction and multiplication of
integers. However, the division of integers is not a binary operation on the integers.

Definition 1.2 Binary operation
Let G be a group. A binary operation is a map of sets:

∗ : G×G→ G.

For ease of notation we write ∗(a, b) = a ∗ b ∀a, b ∈ G. Any binary operation on G gives a
way of combining elements. As we have seen, ifG = Z then+ and× are natural example of binary
operations.

Additive Group Multiplicative Group

Let G be a set, and + be an operation, then
(G,+) is an additive group provided

LetG be a set, and be an operation, then (G, ◦)
is an multiplicative group provided

1. ∀a, b ∈ G, a+ b ∈ G 6. ∀a, b ∈ G, a ◦ b ∈ G

2. ∀a, b, c ∈ G, a+(b+ c) = (a+ b)+ c 7. ∀a, b, c ∈ G, a ◦ (b ◦ c) = (a ◦ b) ◦ c

3. ∀a ∈ G, ∃ 0 ∈ G (identity) s.t.

a+0 = a = 0+ a

8. ∀a ∈ G, ∃1 ∈ G (unity) s.t.

a ◦ 1 = a = 1 ◦ a

4. ∀a ∈ G, ∃ − a ∈ G (additive inverse) s.t.

a+(−a) = 0 = (−a)+ a

9. ∀a ∈ G, ∃a−1 ∈ G (unity) s.t.

a ◦ a−1 = 1 = a−1 ◦ a

5. (Commutative) ∀a, b ∈ G, a+ b = b+ a 10. (Commutative) ∀a, b ∈ G, a ◦ b = b ◦ a

2



Joining additive and multiplicative groups together, we form a ring with distributive laws

11. ∀a, b, c ∈ G, (a+ b) ◦ c = (a ◦ c)+ (b ◦ c)

12. ∀a, b, c ∈ G, c ◦ (a+ b) = (c ◦ a)+ (c ◦ b)

• Abelian group: (1-5) or (6-10)

• Associative Ring: 1-6, with 11 and 12

• Semigroup: 1, 2 only

• Monoid (Semigroup with identity): 1, 2, 3 only

• Commutative ring: 1-5, 6, 10, 11, and 12

• Ring: 1-5, with 11 and 12

• Ring with unity: 1-6, with 8, 11, and 12

• Field: 1-12

Axiom 1.1 Groups
Let G be a set together with a binary operation that assigns to each ordered pair (a, b) of
elements of G an element in G denoted by a ∗ b. We say that (G, ∗) is a group under this
operation if the following properties are satisfies.

1. (Closure) ∀a, b ∈ G, a ∗ b ∈ G.

2. (Associativity) ∀a, b, c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c ∈ G.

3. (Existence of Identity) ∀a ∈ G, ∃e ∈ G s.t. a ∗ e = a = e ∗ a ∈ G.

4. (Existence of Inverse) ∀a ∈ G, ∃a−1 ∈ G s.t. a ∗ a−1 = e = a−1 ∗ a ∈ G.

Example 1.0.1. The set of integers Z, the set of rational numbers Q and the set of real numbers R
are all groups under normal addition.

Example 1.0.2. The set

GL(2,R) =
{[

a b
c d

] ∣∣∣∣ a, b, c, d ∈ R, ad− bc ̸= 0

}
is a non-abelian group under matrix multiplication.
Solution Check if GL(2,R) is closure,asscoiative, has identity and has inverse.
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1. (Closureness) For all
[
a1 b1
c1 d1

]
,

[
a2 b2
c2 d2

]
inGL(2,R), with a1d1−b1c1 ̸= 0 and a2d2−b2c2 ̸= 0.

[
a1 b1
c1 d1

] [
a2 b2
c2 d2

]
=

[
a1a2 + b1c2 a1b2 + b1d2
c1a2 + d1c1 c1b2 + d1d2

]
∈ GL(2,R)

= (a1a2 + b1c2)(c1b2 + d1d2)− (a1b2 + b1d2)(c1a2 + d1c1)

= a1a2c1b2 + a1a2d1d2 + b1b2c1c2 + b1c2d1d2

− a1a2b2c1 − a2b2c2d1 − a2b1c1d2 − b1c2d1d2

= (a1d1 − b1c1)(a2d2 − c2b2) ̸= 0 ∈ GL(2,R).

Matrix multiplication is closed under GL(2,R).

2. (Associativity) For all
[
a1 b1
c1 d1

]
,

[
a2 b2
c2 d2

]
,

[
a3 b3
c3 d3

]
in GL(2,R), we have

[
a1 b1
c1 d1

]([
a2 b2
c2 d2

] [
a3 b3
c3 d3

])
=

([
a1 b1
c1 d1

] [
a2 b2
c2 d2

])[
a3 b3
c3 d3

]
.

Matrix multiplication in GL(2,R) is asscoiative.

3. (Existence of identity) ∀
[
a b
c d

]
∈ GL(2,R), ∃

[
1 0
0 1

]
∈ GL(2,R) s.t.

[
a b
c d

] [
1 0
0 1

]
=

[
1 0
0 1

] [
a b
c d

]
=

[
a b
c d

]

4. (Existence of inverse) ∀
[
a b
c d

]
∈ GL(2,R), ∃ 1

ad− bc

[
d −b
−c a

]
∈ GL(2,R) s.t.

[
a b
c d

]
1

ad− bc

[
d −b
−c a

]
=

1

ad− bc

[
a b
c d

] [
d −b
−c a

]
=

1

ad− bc

[
ad− bc −ab+ ba
cd− cd −bc+ ad

]
=

[
1 0
0 1

]
.

Similarly, we can verify that

1

ad− bc

[
d −b
−c a

]
∈ GL(2,R)

since
1

ad− bc
det

[
d −b
−c a

]
=

1

ad− bc
(da− bc) = 1 ̸= 0.

The inverse does exists whenever a, b, c, d in R.

◀

Example 1.0.3 (Non-example). The set Z4 = {0, 1, 2, 3} is not a group under multiplication mod-
ulo 4.
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Solution Because gcd(2, 4) = 2 ̸= 1, which means 2−1 does not exists in Z4. Each elements in the
group should have its unique inverse. Thus (Z4, ·) is not a group. ◀

Example 1.0.4 (Non-example). The set of integers under subtraction is not a group.
Solution For all a, b, c ∈ Z,

a− (b− c) = a− b+ c ̸= (a− b)− c.

Which viloates the asscoiative property. So the subtraction in the set of integers is not a group. ◀

Example 1.0.5. The set Q+ of positive rationals is a group under ordinary multiplication.

Example 1.0.6. For a fixed point (x, y) in 2-dimensional cartesian planeR2, we define the geomet-
rical translation Ta,b : R2 → R2 by

Ta,b(x, y) = (x+a, y+b).

The set G = {Ta,b | a, b ∈ R} is a group under function composition.

x

y

−1 1 2 3 4 5

−1

1

2

3

4

5

0

Ta,b

a

b

(x+a, y+b)

Solution 1. (Closureness) We want to show:

∀Ta,b, Tc,d ∈ G, Ta,b ◦ Tc,d ∈ G

We compute the composition

(Ta,b ◦ Tc,d)(x, y) = Ta,b(Tc,d(x, y))

= Ta,b(x+ c, y + d)

= (x+ a+ c, y + b+ d)

= (x+ (a+ c), y + (b+ d)) asscoiativity of ordinary addition
= Ta+c, b+d(x, y)

which closed under G.
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2. (Associativity) For all Ta,b, Tc,d, Tg,h ∈ G, we have

Ta,b ◦ (Tc,d ◦ Tg,h) = Ta,b ◦ Tc+g,d+h

= Ta+(c+g),b+(d+h)

= T(a+c)+g,(b+d)+h

= Ta+c,b+d ◦ Tg,h

= (Ta,b ◦ Tc,d) ◦ Tg,h

so the translation closed under the function composition.

3. (Existence of identity) ∀Ta,b ∈ G, ∃Te1,e2 ∈ G such that

Ta,b ◦ Te1,e2 = Ta,b = Te1,e2 ◦ Ta,b.

We need to find the value of e1 and e2.

Ta,b ◦ Te1,e2 = Ta,b ⇒ Ta+e1,b+e2 = Ta,b

⇒ a+ e1 = a and b+ e2 = b

On solving, we have e1 = e2 = 0. Thus T0,0 ∈ G is the identity.

4. (Existence of inverse) ∀Ta,b ∈ G, ∃Tα,β ∈ G such that

Ta,b ◦ Tα,β = T0,0 = Tα,β ◦ Ta,b.

Compute

Ta,b ◦ Tα,β = T0,0 ⇒ Ta+α,b+β = T0,0

⇒ a+ α = 0 and b+ β = 0

solving equations give us α = −a and β = −b. The inverse of Ta,b in G is T−a,−b.
◀

Definition 1.3 Multiplicative group modulo n
The multiplicative group of integers modulo n, denoted Z∗

n or U(n), is the group

U(n) := {k ∈ Zn | gcd(n, k) = 1}

where the binary operation is multiplication, modulo n.

Example 1.0.7. The set
U(n) = {x ∈ Z+ | x < n, gcd(x, n) = 1}

is a group under multiplication modulo n.
Solution 1. (Closureness) For all x, y ∈ U(n), where x, y < n and gcd(x, n) = gcd(y, n) = 1,

then xy ∈ U(n) since gcd(xy, n) = gcd(x, n) gcd(y, n) = 1.

2. (Associativity) Associative holds since x(yz) = (xy)z whenever x, y, z in U(n).

3. (Existence of identity) ∀x ∈ U(n), ∃1 ∈ U(n) s.t. x · 1 = x = 1 · x.
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4. (Existence of inverse) For all x ∈ U(n), since gcd(x, n) = 1. Then by extended Euclidean
algorithmwe have

ax+ bn = 1 for some a, b ∈ U(n) (♡)
taking modulo n on (♡) yields ax = 1 =⇒ x−1 = a. Thus the inverse of x does exists.

◀

Example 1.0.8. Draw a cayley table for U(10).
Solution U(10) contains all the integers that are coprime to 10. That is,

U(10) = {1, 3, 7, 9}.

U(10) is a group under multiplication modulo 10.

·10 1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

◀

Lemma 1.1 Uniqueness of group identity
In a group G, there is one and only one identity element e.

Proof. For the sake of contradiction. Suppose not, Suppose that e and e′ are both identity elements of
group G. Since e is an identity element of G, then e ∈ G and

ea = a = ae ∀a ∈ G. (♡)

Since e′ is also an identity element of G. we said that e′ ∈ G and

e′a = a = ae′ ∀a ∈ G. (♣)

From (♡), if we take a = e′, then e · e′ = e′.
From (♣), if we take a = e, then e = e · e′.
Combining the results we have e = e · e′ = e′, and so e = e′. There is only one identity element

in G. We proved the uniqueness of identity.

Lemma 1.2 Cancellation rule
In a group G, ba = ca implies b = c; and ab = ac implies b = c.

Proof. Consider G is a group, then

∀a ∈ G,∃a′ ∈ G s.t. aa′ = e = a′a.
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To show the right cancellation works, we further consider ba = ca. Multiplying a′ on both sides of
the previous equation on right, we obtained

(ba)a′ = (ca)a′

Then, b(aa′) = c(aa′) and so be = ce⇒ b = c . The proof is now complete.

Theorem 1.1 Socks-shoes property

(a ◦ b)−1 = b−1 ◦ a−1 (1.1)

Proof. Since we know that G is a group, then ab ∈ G for all a, b ∈ G since G is closure. Next, we
consider the following equation

(ab)(b−1 a−1) = a(bb−1)a−1 G is asscoiative
= aea−1

= aa−1

= e cancellation rule returns identity

this equation states that
(ab)(b−1 a−1) = a(bb−1)a−1 = e

now we cancel off ab from both sides of the equations, we now arrive at

(ab)−1 = b−1a−1

and we have done the proof.

Remark. In abstract algebra, the position of inputs in binary operator is very important! The commutative
property no necessary hold. a ◦ b ̸= b ◦ a. E.g. matrix multiplication AB ̸= BA.

Example 1.0.9 (Tutorial). Show that every group with identity e and x ∗ x = x for all x ∈ G is
abelian.
Solution Given (G, ∗) is a group, there is an identity e ∈ G and for all x ∈ G, x ∗ x = x. We want
to show G is abelian.

∀a, b ∈ G, a ∗ a = a and b ∗ b = b. Since G is a group, so a ∗ b ∈ G. Observe that

(a ∗ b) ∗ (a ∗ b) = a ∗ b⇒ a ∗ (b ∗ a) ∗ b = (a ∗ a) ∗ (b ∗ b)
⇒ a ∗ (b ∗ a) ∗ b = a ∗ a ∗ b ∗ b
⇒ a ∗ (b ∗ a) ∗ b = a ∗ (a ∗ b) ∗ b
⇒ �a ∗ (b ∗ a) ∗ �b = �a ∗ (a ∗ b) ∗ �b

⇒ b ∗ a = a ∗ b .

Thus ∗ commute and G is an abelian group. ◀
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1.1 Finite groups and Subgroups

Definition 1.4 Order of group
The number of elements of a group (finite or infinite) is called its order. We will use |G| to
denote the order of G.

The order of an element g inG is the smallest positive integer n such that gn = e (In additive
notation, this would be ng = 0). If no such integer exists, we said that g has infinite order. The
order of an element g ∈ G is denoted by ord(g).

Definition 1.5 Subgroups
If a subset H of a group G is itself a group under the same operation of G, we say that H is
a subgroup of G.

Remark. We use the notation H ≤ G to mean that H is a subgroup of G. We use the notation H < G to
denote that H is a proper subgroup of G.

The subgroup {e} is called the trivial subgroup of G; a subgroup that is not {e} is called a nontrivial
subgroup of G.

1.1.1 Subgroup tests

Theorem 1.2 One step subgroup test
Suppose G is a multiplicative group and H ⊆ G. If

1. H ̸= ∅,

2. ∀a, b ∈ H, ab−1 ∈ H

then H is a subgroup of G.

Proof. Given that G is a group and ∅ ̸= H ⊆ G such that for any a, b in subgroup H , we have

ab−1 ∈ H (♡)

Then, what we need to do is to show that H ≤ G, which is equivalent to show that H itself is a
group, andH definitely inherits the operation ofG. SoH is closed under the same operation ofG.

(Closure) Take a = x and b = y−1 into (♡), which for all x, y ∈ H . We have

x(y−1)−1 = xy ∈ H

which is closed under H .
(Associativity) Since asscoiative law holds in G, so as H , since both G and H are sharing the

same operation.
(Existence of identity) SinceH is nonempty, then we can randomly pick an element x ∈ H . If

we replace a and b in the hypothesis (♡) with a = b = x, then we have

∀x ∈ H, xx−1 = e ∈ H
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(Existence of inverse) Replacing a = e and b = x in (♡), we have

ex−1 = x−1 ∈ H ∀x ∈ H

Example 1.1.1. Let G be an abelian group with identity e. Then

H = {x ∈ G | x2 = e}

is a subgroup of G.
Solution We can use one-step subgroup test to check:

1. Since G is a group, then e ∈ G and so e = e2 ∈ H ̸= ∅.

2. For all a, b ∈ H , we see that a2 = e and b2 = e. Next, we compute

(ab−1)2 = (ab−1)(ab−1)

= a2(b−1)2

= a2(b2)−1

= ee−1

= e

implies ab−1 is in H . Thus H ≤ G.

◀

Theorem 1.3 Two-step subgroup test
Suppose G is a multiplicative group and H ⊆ G. H is a subgroup of G provided

1. H ̸= ∅,

2. For any a, b ∈ H , ab ∈ H ,

3. For all a ∈ H , a−1 ∈ H

Theorem 1.4 Finite subgroup test
Suppose G is a multiplicative group and H ⊆ G. H is a subgroup of G provided

1. |H| <∞

2. For all a, b ∈ H , ab ∈ H . (which means H closed under the same operation of G)

Example 1.1.2. Let G be an abelian group under multiplication with identity e. Then

H = {x2 | x ∈ G}

is a subgroup of G.
Solution
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Since G is a group, then e2 = e ∈ G and G is nonempty.

For all a, b ∈ H , we see that a = x2 and b = y2 ∀x, y ∈ G. Next, we compute

ab−1 = (x2)(y2)−1

= xxy−1y−1

= xy−1xy−1

= (xy−1)2

implies ab−1 = (xy−1)2 is in H . Thus H ≤ G. ◀

Example 1.1.3. Let G = R∗ \ {0}, (G, ·) is a multiplicative group. And

H = {x ∈ G | x = 1 or x is irrational}

is not a subgroup of G.
Solution With two-step subgroup test, step 2 is wrong.
(Counterexample)

√
2 ∈ H , but

√
2
√
2 = 2 /∈ H . ◀

Example 1.1.4. Let G = R∗ \ {0}, (G, ·) is a multiplicative group. And

K = {x ∈ G | x ≥ 1}

is not a subgroup of G.
Solution With two-step subgroup test, step 3 is wrong.

(Counterexample) Take 2 ∈ K, but 2−1 =
1

2
/∈ K. ◀

1.2 Cyclic groups

Cyclic groups are groups in which every element is a power of some fixed element. In additive
group, then every element is a multiple of some fixed element. For instance,

a+ a+ · · ·+ a︸ ︷︷ ︸
n times

= na, n is integer

Definition 1.6 Generating subgroup
If G is a multiplicative group and g ∈ G, then the subgroup generated by element g is

⟨g⟩ = {a · a · · · · · a︸ ︷︷ ︸
n times

| n ∈ Z} = {gn | n ∈ Z} (1.2)

If the group is abelian and is additive, then

⟨g⟩ = {a+ a+ · · ·+ a︸ ︷︷ ︸
n times

| n ∈ Z} = {ng | n ∈ Z} (1.3)

Remark. ⟨g⟩ is called a cyclic subgroup generated by g in group G. When G = ⟨g⟩, then G is called a
cyclic group.

CHAPTER 1. GROUPS | 11



Definition 1.7 Cyclic group
A group G is cyclic if G = ⟨g⟩ for some g ∈ G. g is a generator of ⟨g⟩.

Lemma 1.3
⟨g⟩ is a subgroup of G.

Proof. We can use 2-step subgroup test to verify ⟨g⟩ ≤ G:

1. Since g ∈ ⟨g⟩ ≠ ∅.
2. For all g1, g2 ∈ ⟨g⟩, we have

g1 = gn1 , g2 = gn2

where n1 and n2 are integers. And since

g1 g2 = gn1 gn2 = gn1+n2

and n+n2 ∈ Z implies that g1 g2 ∈ ⟨g⟩.
3. For all g1 ∈ ⟨g⟩, we have g1 = gk, where k is integer. We compute the inverse

g−1
1 = (gk)−1 = g−k, −k ∈ Z

which tells us that g−1
1 ∈ ⟨g⟩.

Therefore, by 2-step subgroup test, ⟨g⟩ is a subgroup of G.

Lemma 1.4
If G is a cyclic group, then G is abelian.

Proof. Consider a cyclic group G. We want to show G is also an abelian group.
Since G is a group, we say

∀g1, g2 ∈ G, g1 = gn1 , g2 = gn2

where n1 and n2 are integers. In order to show thatG is abelian, we need to show that the commu-
tative law applied in group G.

now compute

g1 g2 = an1an2

= gn1+n2

= gn2+n1 commutative in normal addition
= gn2gn1 = g2 g1

thus G is an abelian group.

Definition 1.8 Center of group
The center, Z(G), of a groupG is a subset of elements inG that commutewith every element
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of G, that is,
Z(G) = {g ∈ G | gx = xg for all x ∈ G}. (1.4)

Lemma 1.5
The center of a group G is also a subgroup of G.

Proof. We use one-step subgroup test to verify:

1. Since we know that G is a group, certainly the identity e ∈ G and

ex = x = xe ∀x ∈ G.

implies that e ∈ Z(G) and Z(G) is nonempty.

2. For any a1, a2 in Z(G), we need to show

a1 a
−1
2 ∈ Z(G).

Since Z(G) is the center, we have a1 x = xa1 and a2 x = xa2 for all x ∈ G. Proving a1 a
−1
2 ∈

Z(G) is equivalent to show
a1 a

−1
2 x = xa1 a

−1
2 ∀x ∈ G

compute

a1 a
−1
2 x = a1(a

−1
2 x) Associativity of Z(G)

= a1(xa
−1
2 ) Since a−1

2 x = xa−1
2

= (a1x)a
−1
2 Associativity of Z(G)

= (xa1)a
−1
2 Since a1x = xa1

= xa1 a
−1
2

which is what we desired.

Therefore the center Z(G) is a subgroup of G by one-step subgroup test.

Definition 1.9 Group centralizer
Let a be a fixed element of a group G. The centralizer of a in G is

C(a) = {g ∈ G | ga = ag}. (1.5)

Theorem 1.5
Let a be a fixed element in group G. If a has infinite order, then ai = aj if and only if i = j.
However, if a has finite order, said, n, then

⟨a⟩ = {e, a, a2, . . . , an−1} (1.6)

and ai = aj if and only if n|i− j.
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Proof. Consider a group G, and take an a from G. If a has infinite order, say, ord(a) = ∞, then
there is no nonzero integer n such that an = e. We assume an equation ai = aj for some i, j ∈ Z,
we have

ai−j = e⇒ i− j = 0⇒ i = j .

and we are done.
On the other hand, if a has finite order, just say ord(a) = n. We want to show

⟨a⟩ = {e, a, a2, . . . , an−1}.

Apparently, e, a, a2, . . . , an−1 are all belongs to ⟨a⟩, so as the list {e, a, a2, . . . , an−1} ⊆ ⟨a⟩. Now we
continue to check if {e, a, a2, . . . , an−1} ⊇ ⟨a⟩.

By division algorithm, there exists some integers q and r such that

k = nq + r, 0 ≤ r < n

compute
ak = aqn+r = (an)q ar = eqar = ar

this implies ak = ar ∈ {e, a, a2, . . . , an−1}. Thus we have

{e, a, a2, . . . , an−1} ⊇ ⟨a⟩.

Now the final part is to show ai = aj iff n|i− j, we are going to proof on two directions.
(⇒) If ai = aj , we need to show that n is divisible by i − j. Again we applying the division

algorithm,
i− j = nq + r, 0 ≤ r < n

which q is quotient and r is remainder.
compute

ai−j = e ⇒ anq+r = e division algorithm
⇒ anq ar = e

⇒ (an)q ar = e

⇒ eq ar = e since an = e

⇒ e ar = e

⇒ ar = e

but n is the least integer such that an = e and so the condition 0 ≤ r < n implies r = 0. Now we
continue on the opposite side of the statement.

(⇐) This part is more straightforward. Conversely, if n|i− j, then

ai−j = anq+r division algorithm
= anq remainder r is zero
= (an)q

= eq since an = e

= e

and we are done.
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Corollary 1.1
For any group element a, ord(a) = |⟨a⟩|.

Proof. By previous theorem, ⟨a⟩ = {e, a, a2, . . . , an−1} has n elements. Thus |⟨a⟩| = ord(a) = n.

Theorem 1.6
Let a be an element of order n in a group and let k be a positive integer. Then

⟨ak⟩ = ⟨agcd(n,k)⟩

and
ord(a) =

n

gcd(n, k)
.

Proof. 1. To show that ⟨ak⟩ = ⟨agcd(n,k)⟩ is equivalent of showing ⟨ak⟩ ⊆ ⟨agcd(n,k)⟩.
Consider ak ∈ ⟨ak⟩, and let d = gcd(n, k). This implies that d divide k and k = dr for some
integer r. Thus

ak = adr = (ad)r ∈ ⟨ad⟩ = ⟨agcd(n,k)⟩.

On the other hand, we want to show ⟨ak⟩ ⊇ ⟨agcd(n,k)⟩, which is equivalent to show ⟨ad⟩ ⊆
⟨ak⟩. Consider ad ∈ ⟨ad⟩. By extended Euclidean algorithm,

ad = agcd(n,k)

= ant+ks for some integers k, s

= (an)t(ak)s

= et(ak)s

= (ak)s ∈ ⟨ak⟩.

2. Certainly,

ord(ak) = |⟨ak⟩|
= |⟨ad⟩|
= ord(ad)

=
n

d

=
n

gcd(n, k)
.

Theorem 1.7 Fundamental theorem of cyclic groups
Suppose G = ⟨g⟩ is cyclic.

1. Every subgroup of G is cyclic.
2. If |G| = n, then the order of any subgroup of G divides n.
3. If |G| = n, then for any positive integer k, n the subgroup ⟨gn/k⟩ is the unique subgroup
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of order k.

Proof. 1. Let H is a subgroup of G, if H = {e} then we are done.
Assume that H ̸= {e}, choose gm ∈ H with minimal m ∈ Z+ by well-ordering. Clearly
⟨gm⟩ ⊆ H . If some gk ∈ H then by division algorithmwe have

k = qm+ r =⇒ r = k − qm 0 ≤ r < m

and then gr = gk (gm)−q ∈ H and so r = 0 by minimality of m and so gk = (gm)q and hence
gk ∈ ⟨gm⟩.

2. Take a subgroupH ≤ G. From (1) we knowH is cyclic andH = ⟨gm⟩with minimal positive
integer m. Again we apply division algorithm and write

n = qm+ r =⇒ r = n− qm 0 ≤ r < m

and gr = gn (gm)−q ∈ H and so r = 0, and then

|H| = |⟨gm⟩| = ord(gm) =
n

gcd(n,m)
=

n

m

and thusm|H| = n and |H| divide n.

3. Observe first that k|n we have

|⟨gn/k⟩| = |gn/k| = n

gcd(n, n/k)
=

n

n/k
= k.

Thus certainly ⟨gn/k⟩ is a subgroup of order k. We must show that it is unique. Let H be a
subgroup ofG such that |H| = k|n. SinceH ≤ G by (1) and (2) we haveH = ⟨gm⟩withm|n.
Then we have

k = |H| = |⟨gm⟩| = ord(gm) =
n

gcd(n,m)
=

n

m

Thusm = n
k and so H = ⟨gm⟩ = ⟨gn/k⟩ .

Example 1.2.1. In Z12 = {0, 1, 2, . . . , 11} the complete list of generators is U(12) = {1, 5, 7, 11}. So
for example

⟨5⟩ = {0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55} (mod 12)

= {0, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7}

Example 1.2.2. Consider U(50): its order is ϕ(50) = 20, and its elements are

{1, 3, 7, 9, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39, 41, 43, 47, 49}.

Given that U(50) = ⟨3⟩. Find all generators of U(50).
Solution Since ⟨3k⟩ = ⟨3⟩ ⇔ gcd(20, k) = 1⇔ k ∈ U(20). Since

U(20) = {1, 3, 7, 9, 11, 13, 17, 19},
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the generators of U(50) are

{3, 33, 37, 39, 311, 313, 317, 319} or {3, 27, 37, 33, 47, 23, 13, 17}.

◀

Example 1.2.3. Find all the subgroups of Z42.
Solution Listed out all the possible divisors of 42 we have

k 42/k subgroup order k, ⟨(42/k)⟩with k|42.
1 42 ⟨42⟩ = {0}
2 21 ⟨21⟩ = {0, 21}
3 14 ⟨14⟩ = {0, 14, 18}
6 7 ⟨7⟩ = {0, 7, 14, 21, 28, 35}
7 6 ⟨6⟩ = {0, 6, 12, 18, 24, 30, 36}
14 3 ⟨3⟩ = {0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39}
21 2 ⟨2⟩ is set of all even numbers in Z42

42 1 ⟨1⟩ = Z42

◀

Example 1.2.4. Draw a subgroup lattice of Z30.
Solution By prime factorizing 30 = 2 · 3 · 5. The factors of 30 are

1, 2, 3, 5, 6, 10, 15, 30

The lattice diagram is
Z30

⟨5⟩ ⟨3⟩ ⟨2⟩

⟨15⟩ ⟨10⟩ ⟨6⟩

⟨0⟩

◀
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1.3 Permutation

Definition 1.10
A permutation of a set A is a function from A to A that is both one-to one and onto. A
permutation group of a set A is the set of permutations of A that forms a group under
function composition

Example 1.3.1. Let S3 denote the set of all one-to-one functions from {1, 2, 3} to itself. The S3

under function composition, is a group with six elements.

S3 = {1, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}
= {1, (1 2), (1 3), (2 3), (1 3)(1 2), (1 2)(1 3)}

Example 1.3.2. Let A = {1, 2, 3, 4}, and

S4 = {σ | σ : A→ A is a permutation from A onto A}.

We defined σ as follow:

σ(1) 7→ 2, σ(2) 7→ 3, σ(3) 7→ 4, σ(4) 7→ 1.

Now we can express σ as a permutation such that

σ = (1 σ(1) σ2(1) σ3(1)) =

(
1 2 3 4
2 3 4 1

)
where

σ(1) = 2

σ2(1) = σ(σ(1)) = σ(2) = 3

σ3(1) = σ(σ(σ(1))) = σ(σ(2)) = σ(3) = 4

σ4(1) = σ(σ(σ(σ(1)))) = σ(σ(σ(2))) = σ(σ(3)) = σ(4) = 1

Example 1.3.3. Given α = (2 3 1 5 4) and β = (2 1 3 4) in S5. Compute αβ, and β−1.
Solution Compute

αβ = (2 3 1 5 4)(2 1 3 4)

=

(
1 2 3 4 5
5 3 1 2 4

)(
1 2 3 4 5
3 1 4 2 5

)
=

(
1 2 3 4 5
1 5 2 3 4

)
= (1)(2 5 4 3)

= (2 5 4 3)
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and

β−1 =

1 2 3 4 5
↑ ↑ ↑ ↑ ↑
3 1 4 2 5

−1

=

(
1 2 3 4 5
2 4 1 3 5

)
= (1 2 4 3)(5)

= (1 2 4 3).

◀

Lemma 1.6
Every permutation of a finite set can be written as a cycle or as a product of disjoint cycles.

Theorem 1.8
If the pair of cycles α = (a1, a2, . . . , am) and β = (b1, b2, . . . , bm) have no entries in common,
then αβ = βα. In other words, any two disjoint cycles commute.

Proof. Let α = (a1, a2, . . . , am) and β = (b1, b2, . . . , bm) be two disjoint cycles. These cycles are
defined on the set

A = {a1, a2, . . . , at, b1, b2, . . . , bs, c1, c2, . . . , cr︸ ︷︷ ︸
Fixed points

}.

and so α, β ∈ St+s+r. We want to show that α ◦ β = β ◦ α is equivalent to show

(α ◦ β)(x) = (β ◦ α)(x) ∀x ∈ A.

We are considering three possible cases:
Case 1: Suppose that x = ai, where 1 ≤ i ≤ t. On LHS

(α ◦ β)(ai) = α(β(ai))

= α(ai)

= ai+1.

and on RHS

(β ◦ α)(ai) = β(α(ai))

= β(ai+1)

= ai+1.

Thus, LHS = RHS for first case.
Case 2: Suppose that x = bj , where 1 ≤ j ≤ s. On LHS
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(α ◦ β)(bj) = α(β(bj))

= α(bj+1)

= bj+1.

and on RHS

(β ◦ α)(ai) = β(α(bj))

= β(bj)

= bj+1.

Thus, LHS = RHS for second case.
Case 3: At last, suppose that x = ck, where 1 ≤ k ≤ r. Each ck are fixed points and they always

stay in the same value whenever any cycles.

(α ◦ β)(ck) = ck = (β ◦ α)(ck).

Hence, we conclude that any disjoint cycles are commute.

Definition 1.11
A permutation that can be expressed as a product of an even (or odd) number of 2-cycles is
called an even (or odd) permutation.

Example 1.3.4. Write
σ =

(
1 2 3 4 5 6 7 8
3 7 4 1 2 5 8 6

)
∈ S8

into the product of 2-cycles.
Solution We can express σ as

σ = (1 3 4)(2 7 8 6 5)

= (1 4)(1 3)(2 5)(2 6)(2 8)(2 7).

◀

Example 1.3.5. Find the order of β = (1 2 3 4)(5 6 7) in S7.
Solution The order of a disjoint cycle is the LCM of the order of each disjoint cycles. Namely,

ord(β) = LCM(ord (1 2 3 4), ord (5 6 7))

= LCM(4, 3)

=
4× 3

gcd(4, 3)

= 12.

◀
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Definition 1.12 Alternating group
The group of even permutations of n symbols is denoted byAn and is called the alternating
group of degree n.

Theorem 1.9
For n > 1, An has order n!/2.

1.4 Dihedral Group

Dihedral groups are an essential class in group theory that arise naturally in geometry and other
areas of mathematics.

For n ≥ 3, the dihedral groupDn is described as the rigid motions taking a regular n-gon back
to itself, with the operations

We could said that the rotational symmetry group of an equilateral triangle, C3, is isomorphic
to Z3. We can combine the horizontal reflection and rotations and form another reflection lines,
which these reflection lines runs from one of the vertices to the center of the opposing side.

= r
120°

= r
240°

2

Theorem 1.10
Let the n-degree dihedral group

Dn = ⟨r, s | rn = e, s2 = e, srs = r−1⟩.

Then

1. rks = sr−k.
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= r
360°

3

Figure 1.1: The rotation r on dihedral group D3 with order 6. r in D3 is described as rotating
equilateral triangle 120 degree.

= f

Figure 1.2: The group action f on dihedral group D3 with order 6. f is a horizontal flip.

2. The order of rk is n

gcd(n, k)
.

Proof. 1. Compute

rks = erks

= s2rks

= ssrks

= sr−k .

and we are done.

2. We will first show that rk = e if and only if n|k.
(⇒) Consider e = rk, then by division algorithmwe have

k = na+ b where 0 ≤ b < n.

Thus
e = rk = rna+b = (rn)a rb = earb = rb.

Since the smallest possible integerm by well-ordering, such that rm = e, is n, b = 0.
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120°

=rf

Figure 1.3: The composition of 120 deg rotation with horizontal reflection form another reflection
line at vertice

(⇐) Conversely, if n divide k, then k = ns for some integer s. Hence

rk = rns = (rn)s = es = e.

Thus rk = e⇐⇒ n|k.
Now let b = rk ∈ Dn, since r is a generator of Dn. We shall show that the smallest integer m
such that rk = e is n/k. Let d = gcd(n, k). Consider

e = bm = rkm.

Since this is the smallest integerm such thatn|km. Thus n
d divide mk

d . Because d is the greatest
common divisor of n and k, implies n

d and k
d are relatively prime. Hence

n

d

∣∣∣∣mk

d
=⇒ n

d

∣∣∣∣m
The smallest suchm is n

d . Thus
ord(rk) =

n

gcd(n, k)
.

Example 1.4.1. Let

G = SL2(Z3) =

{[
a b
c d

] ∣∣∣∣ ad− bc = 1; a, b, c, d ∈ Z3

}
.

Show that |G| = 48.
Solution From the first row, for all (a, b) ∈ Z3 × Z3 \ {(0, 0)}. There are (3P 1 × 3P 1) − 1 = 8
possibilities.
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For the second row, for all (c, d) ∈ Z3×Z3\(aZ3, bZ3). There are (3P 1×3P 1)−3 = 6possibilities.
Thus the order of group G is the product of the number of possibilities of these two rows.

|G| = 8× 6 = 48. ◀

1.5 Normal subgroups, Quotient groups

1.5.1 Cosets

Definition 1.13 Cosets
Let G be a group and let H be a subset of G. For any a ∈ G, the set

aH := {ah | h ∈ H}

is called the left coset of H in G containing element a.
Analogously, the set

Ha := {ha | h ∈ H}

is called the right coset of H in G containing element a. In this case, the element a is called
the coset representative of aH (or Ha).
We use |aH| (or |Ha|) to be the number of elements in the left (or right) coset.

Example 1.5.1. Consider G = Z9 = {0, 1, 2, . . . , 8}(mod 9). We take a cyclic subgroup

H = ⟨3⟩ = {0, 3, 6}

which came from (G,+9). All left cosets of G with respect to H are {H, 1 +9 H, 2 +9 H}where

0 +H = {0 + 0, 0 + 3, 0 + 6} (mod 9) = {0, 3, 6} = H

1H = 1 +H = {1 + 0, 1 + 3, 1 + 6} (mod 9) = {1, 4, 7}
2H = 2 +H = {2 + 0, 2 + 3, 2 + 6} (mod 9) = {2, 5, 8}
3H = 3 +H = {3 + 0, 3 + 3, 3 + 6} (mod 9) = {3, 6, 0} = H

As for the right cosets of Gwith respect toH are {H,H +9 1, H +9 2}. Pay attention that now
the element of coset are being added to right-hand side instead of from left side.

H + 0 = {0 + 0, 0 + 3, 0 + 6} (mod 9) = {0, 3, 6} = H

H1 = H + 1 = {0 + 1, 3 + 1, 6 + 1} (mod 9) = {1, 4, 7}
H2 = H + 2 = {0 + 2, 3 + 2, 6 + 2} (mod 9) = {2, 5, 8}
H3 = H + 3 = {0 + 3, 3 + 3, 6 + 3} (mod 9) = {3, 6, 0} = H

Also, we can draw multiplication table of the cosets.
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H 1 +H 2 +H

H H 1 +H 2 +H

1 +H 1 +H 2 +H H

2 +H 2 +H H 1 +H

Two cosets can also be multiply together. For instance,

(1 +H) · (2 +H) = (1 + 2) +H = 0 +H = H

and
(2 +H) · (2 +H) = (2 + 2) +H = 4 +H = 1 +H.

Example 1.5.2. The reals under addition (R,+), the subgroup (Z,+) of integers. Now

R/Z = {r + Z | r ∈ R}.

The cosets are r + Z with r ∈ [0, 1). R/Z is isomorphic to the circle group S1 of complex numbers
of absolute value 1. The isomorphism is

ϕ[(r + Z)] = ei2πr.

1

2

3

4

Figure 1.4: The abelian group R/Z can be generated by ei2πr.

1.5.2 Normal subgroups

Definition 1.14 Normal subgroups
A subgroup H of (G, ·) is called a normal subgroup if for all g ∈ Gwe have

gH = Hg. (1.7)

We shall denote thatH is a subgroup ofG byH < G, and thatH is a normal subgroup ofG
by H ◁ G.
If H is a normal subgroup of G, and the order of H is equal to the order of G, we called H
the proper normal subgroup, write as H ⊴ G.
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You should be very careful here. The equality gH = Hg is a set equality. They are not constants
or numbers! It says that a right coset is equal to left a coset, it is not an equality elementwise.

Example 1.5.3. Let R[x] denote the group of all polynomial with real coefficients under normal
addition.

For any f in R[x], let f ′ denote the derivative of f . Then the mapping f → f ′ is a homomor-
phism fromR[x] to itself. The kernel of the derivativemapping is the set of all constant polynomials
f(x) = c.

Now suppose we have a group (G, ·), andH is a normal subgroup of G, just saidH ◁ G. The
set G/H is defined by

G/H = {gH | g ∈ H}.

G/H is known as a quotient group.

Example 1.5.4. Show that ifH andK are normal subgroups of a groupG such thatH ∩K = {e},
then hk = kh for all h ∈ H and k ∈ K.
Solution We knew that H ⊴G andK ⊴G, these conditions imply

gHg−1 ⊆ H, gKg−1 ⊆ K ∀g ∈ G.

Since khk−1 ∈ kHk−1 ⊆ kHk−1 ⊆ H . We want to show hk = kh for all h ∈ H and k ∈ K.
Compute

h(kh−1k−1) = e⇒ hkh−1k−1 = e

⇒ hkh−1 = ke

⇒ hkh−1 = khh−1

⇒ hk = kh.

◀

1.5.3 Quotient group

Definition 1.15 Quotient group
Let G be a group, with H a subgroup such that gH = Hg for any g ∈ G. The set

G/H = {gH | g ∈ G}

of cosets of H in G is called a quotient group.

We can check that G/H is indeed a group:

• Because gH = Hg =⇒ gHg′ = gg′H and G/H is closed under the same binary operator.

• Binary operation ◦ : G/H ×G/H , (gH, g′H) 7→ gHg′H is asscoiative.

• The identity element is H since H(gH) = gH for any g in G.
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• The inverse of gH is g−1H , since

(gH)(g−1H) = (g−1H)(gH)

= (gg−1)H

= eH

= H.

1.6 Group homomorphisms

Definition 1.16 Group homomorphisms
A group homomorphism is a map f : (G, ⋄G)→ (H, •H) that respects binary operations:

f(a) •H f(b) = f(a ⋄G b) ∀a, b ∈ G (1.8)

Theorem 1.11 Properties of homomorphism
Let ϕ be a homomorphism from a groupG to a groupG′ and let g be an element ofG. Then

1. ϕ carries the identity of G to the identity of G′.

2. ϕ(gn) = (ϕ(g))n for all n ∈ Z.

3. If ord(g) is finite, then ord(ϕ(g)) divides ord(g).

4. ker(ϕ) is a subgroup of G.

5. ϕ(a) = ϕ(b) if and only if a ker(ϕ) = b ker(ϕ).

6. If ϕ(g) = g′, then ϕ−1(g′) = {x ∈ G | ϕ(x) = g′} = g ker(ϕ).

Example 1.6.1. Let G be any group and let a be any element of G. Let ϕ : Z→ G be defined by

ϕ(n) = an

Show that ϕ is a homomorphism. Find the kernel of ϕ.
Solution For all n1, n2 in Z, we want to show

ϕ(n1 + n2) = ϕ(n1)ϕ(n2).

In fact,
ϕ(n1 + n2) = an1+n2 = an1 an2 = ϕ(n1)ϕ(n2).

which means ϕ preserves the group operation of G. Again we want to show ϕ is both one-to-one
and onto.

1. (One-to-one) For all x, y ∈ Z,

ϕ(x) = y ⇒ ax = y

⇒ x =
log y

log a
, a > 0
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2. (Onto) For all x, y ∈ Z,
ϕ(x) = ϕ(y)⇒ ax = ay ⇒ x = y.

Hence, we compute the kernel of ϕ,

Ker(ϕ) = {n ∈ Z | ϕ(n) = 1}
= {n ∈ Z | an = 1}
= {n ∈ Z | an = a0}
= {n ∈ Z | n = 0}
= {0}.

◀

1.7 Isomorphism

Definition 1.17 Group isomorphisms
An isomorphism ϕ from a group G to a group G′ is a one-to-one mapping from G onto G′

that preserves the group operation. That is,

ϕ(a) •G ϕ(b) = ϕ(a ⋄G′ b)

for all a, b ∈ G. If there is an isomorphism fromG→ G′, we say thatG andG′ are isomorphic
and write as G ∼= G′.

There are four separate steps involved in proving that a group G is isomorphic to another
group G′.

1. Define a candidate for the isomorphism; that is, assume that ϕ(a) = ϕ(b) and hence prove
that a = b.

2. Prove that ϕ is one-to-one; that is, assume that ϕ(a) = ϕ(b) and hence prove that a = b.
3. Prove that ϕ is onto; that is, for any element g′ ∈ G′, find an element g ∈ G such that ϕ(g) = g′.
4. Prove that ϕ is operation-preserving; that is, show that

ϕ(a) •G ϕ(b) = ϕ(a ⋄G′ b)

for all a, b ∈ G.

Example 1.7.1. Let G be the real numbers under addition and G′ be the positive real numbers
under multiplication. G and G′ are isomorphic under the mapping

ϕ(x) = 2x.

Solution Define the mapping ϕ : (G = R,+)→ (G′ = R+, ·). For all x, y in G, we want to show

ϕ(x+ y) = ϕ(x)ϕ(y).

In fact,
ϕ(x+ y) = 2x+y = 2x 2y = ϕ(x)ϕ(y).
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which means ϕ is homomorphism. Again we want to show ϕ is both one-to-one and onto.

1. (One-to-one) For all x, y ∈ G,

ϕ(x) = y ⇒ 2x = y

⇒ x = log2 y, y > 0

2. (Onto) For all x, y ∈ G,
ϕ(x) = ϕ(y)⇒ 2x = 2y ⇒ x = y.

Hence, we compute the kernel of ϕ,

Ker(ϕ) = {n ∈ R | ϕ(x) = 1}
= {n ∈ R | 2x = 1}
= {n ∈ R | x = 0}
= {0}.

◀

Example 1.7.2. Let G = SL(2,R), the group of 2× 2 real matrices with determinant 1. Let M be
any 2× 2 matrix with determinant 1. The mapping ϕM from G→ G defined by

ϕM (A) = MAM−1

is an isomorphism.
Solution 1. First we are going to show that ϕM is one-to-one; that is, for any A1, A2 ∈ G, if

ϕM (A1) = ϕM (A2), then A1 = A2.

ϕM (A1) = ϕM (A2)⇒MA1M
−1 = MA2M

−1

⇒M−1MA1M
−1M = M−1MA2M

−1M

⇒ IA1I = IA2I

⇒ A1 = A2.

2. Show ϕM is onto. For all A2 ∈ G, we need to find A1 ∈ G such that

ϕM (A1) = A2.

We find an equation for A1,

ϕM (A1) = A2 ⇒MA1M
−1 = A2

⇒ A1 = M−1A2M

Now we verify that ϕM (A1) = A2.. Compute

ϕM (A1) = ϕM (M−1A2M)

= M (M−1A2M)M−1

= IA2I

= A2.
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3. At last we are going to show ϕM is a homomorphism. That is,

∀A1, A2 ∈ G, ϕM (A1A2) = ϕM (A1)ϕM (A2).

We start from LHS,

ϕM (A1A2)⇒MA1A2M
−1

⇒MA1 I A2M
−1

⇒MA1 (M
−1M)A2M

−1

⇒ (MA1M
−1)(MA2M

−1)

⇒ ϕM (A1)ϕM (A2).

Therefore ϕM is an isomorphism. ◀

Example 1.7.3. The group U(10) is not isomorphic to U(12).

Theorem 1.12 Cayley’s theorem
Every group is isomorphism to a group of permutation.

Proof. Let G be a multiplication group. From group G, we need to construct a permutation group
G that is isomorphic to G.

Step 1: construct permutation group G

Given G, for all g ∈ G. We define a map Tg : G→ G such that

Tg(x) = gx.

Let G = {Tg | g ∈ G}. We need to show that G under function composition is a group.

1. (Closureness) For all Tg, Th ∈ G, we want to show Tg ◦ Th ∈ G.

Tg ◦ Th = Tg (Th(x))

= Tg(hx)

= g(hx)

= (gh)x

= Tgh(x) ∈ G.

2. (Associativity) For all Tg, Th, Tk ∈ G, we have

Tg ◦ (Th ◦ Tk) = Tg(hk) = T(gh)k = (Tg ◦ Th) ◦ Tk.

The asscoiativity holds in G.
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3. (Existence of identity) For all Tg ∈ G, there exists an Tg′ ∈ G such that

Tg ◦ Tg′ = Tg ⇒ Tgg′ = Tg

⇒ gg′ = g

⇒ g′ = 1

so that g′(x) = 1 · x = x.

4. (Existence of inverse) For all Tg ∈ G, the inverse of Tg is

Tg−1(x) = g−1x ∀g ∈ G.

ThereforeG is a group under function composition. In the next step we are going to prove that the
mapping from G to G is an isomorphism.

Step 2: show that ϕ : G→ G is isomorphism

We now define a mapping ϕ : G→ G, where

ϕ(g) = Tg(x) = gx ∀g ∈ G.

We perform the 3 steps to check ϕ(g) is an isomorphism.

1. (ϕ is one-to-one) For all g, h ∈ G,

ϕ(g) = ϕ(h)⇒ Tg = Th

⇒ Tg(x) = Th(x) ∀x ∈ G

⇒ gx = hx ∀x ∈ G

⇒ g = h.

2. (ϕ is onto) For all Tg′ ∈ G, we need to find an g ∈ G such that ϕ(g) = Tg′ .

ϕ(g) = Tg′ ⇒ Tg(x) = Tg′(x)

⇒ gx = g′x

⇒ g = g′.

3. (ϕ is homomorphism) To show that ϕ is homomorphism, it is equivalent to show that

ϕ(g ◦ h) = ϕ(g)ϕ(h).

From LHS,

ϕ(g ◦ h) = Tgh = Tgh(x)

= (g ◦ h)x
= gx · hx
= ϕ(g)ϕ(h).
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Definition 1.18 Group stabilizer
If G is a group of permutations on the set S and s ∈ S then we define the stabilizer of s to
be the set

StabG(s) = {ϕ ∈ G | ϕ(s) = s}.

Lemma 1.7
If G is a group of permutations of the set S and s ∈ S. Then StabG(s) is a subgroup of G.

Proof. Using two-step subgroup test to verify:

1. ∃ϕ : S → S ∈ StabG(s) s.t. ϕ(x) = x. Thus StabG(s) ̸= ∅.

2. For all ϕ1, ϕ2 ∈ StabG(s), we have

(ϕ1 ◦ ϕ2)(s) = ϕ1 (ϕ2(s)) = ϕ1(s) = s ∈ S

Therefore ϕ1 ◦ ϕ2 ∈ StabG(s).

3. For all ϕ ∈ StabG(s),

ϕ(s) = s⇒ ϕ−1 (ϕ(s)) = ϕ−1(s)

⇒ ϕ−1(s) = s ∈ S

So ϕ−1 is also in StabG(s).

Therefore StabG(s) is a subgroup of G.

Definition 1.19 Group orbit
If G is a group of permutations of the set S and s ∈ S. We define the orbit to be the set

OrbitG(s) = {ϕ(s) | ϕ ∈ G}.

Theorem 1.13 Orbit-Stabilizer theorem
For any group action ϕ : G→ Permutation(S), and for any s ∈ S,

|OrbitG(s)| · | StabG(s)| = |G|. (1.9)

Proof. We define a mapping f : G/ StabG(s)→ OrbitG(s) such that

f (ϕ StabG(s)) = ϕ(s).

f is a homomorphism, and we want to show f is one-to-one and onto.
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1. (One-to-one) For all ϕ1, ϕ2 ∈ StabG(s), we have

ϕ1 StabG(s) = ϕ2 StabG(s)⇒ (ϕ−1
1 ◦ ϕ2) ∈ StabG(s)

⇒ (ϕ−1
1 ◦ ϕ2)(s) = s

⇒ ϕ−1 (ϕ2(s)) = s

⇒ ϕ2(s) = ϕ1(s)

2. (Onto) We again want to show f is onto. For all ϕ ∈ OrbitG(s), we have

f (ϕ StabG(s)) = ϕ(s).

So f is both one-to-one and onto. Which means

|G/ StabG(s)| = |OrbitG(s)| =⇒
|G|

|StabG(s)|
= |OrbitG(s)|

=⇒ |OrbitG(s)| · | StabG(s)| = |G|.
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Theorem 1.14
The group of rotations of a cube is isomorphic to S4.

Proof. We can proof it by visualizing the rigid motions of a cube rotated along the possible axes.

One of three possible axes of rotation through the centers of opposite faces.
Each rotation could be 0◦, 90◦, 180◦, or 270◦, for a total of 3 × 4 = 12 rota-

tions of this type. But three in this count are the trivial identity rotation, which
we only count once, so there are really 10 unique rotations along these axes.

One of four possible axes of rotation through opposite vertices. Each could
be either 120◦ or 240◦, so there are 4 × 2 = 8 rotations of this type.

34 | CHAPTER 1. GROUPS



One of six possible axes of rotation through the centers of opposite edges. Only a 180◦

rotation around these axes would preserve the shape, so we have only 6 rotations possible.

There are 10 + 8 + 6 = 24 possible ways to rotate a cube, this is equal to the order of S4. The
order of S4 is

|S4| = 4! = 4× 3× 2× 1 = 24.

Theorem 1.15 Properties of isomorphisms
Suppose that ϕ is an isomorphism from a group G onto a group G′. Then

1. ϕ carries the identity of G to the identity of G′.

2. For every integer n and for every group element a in G,

ϕ(an) = ϕ(a)n.

3. For any elements a and b ofG, a and b commute if and only if ϕ(a) and ϕ(b) commute.

4. G = ⟨a⟩ if and only if G′ = ⟨ϕ(a)⟩.

5. ord(a) = ord(ϕ(a)) for all a ∈ G.

6. For a fixed integer k and fixed group element b ∈ G, the equation xk = b has the same
number of solutions in G as does the equation xk = ϕ(b) ∈ G′.

7. If G is finite, then G and G′ have exactly the same number of elements of every order.

Proof. 1. Work with G, we know e = gng−n, so

ϕ(e) = ϕ(gng−n)⇒ e′ = ϕ(gn)ϕ(g−n)

⇒ e′ = ϕ(g ∗ g ∗ · · · ∗ g︸ ︷︷ ︸
n times

) ϕ(g−1 ∗ g−1 ∗ · · · ∗ g−1︸ ︷︷ ︸
n times

)

⇒ e′ = ϕ(g) ∗ ϕ(g) ∗ · · · ∗ ϕ(g)︸ ︷︷ ︸
n times

ϕ(g−1) ∗ ϕ(g−1) ∗ · · · ∗ ϕ(g−1)︸ ︷︷ ︸
n times
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2. Using the similar technique, we have

ϕ(gn) = ϕ(g ∗ g ∗ · · · ∗ g︸ ︷︷ ︸
n times

) = ϕ(g) ∗ ϕ(g) ∗ · · · ∗ ϕ(g)︸ ︷︷ ︸
n times

= ϕ(g)n.

3. For all a, b ∈ G, a and b commute if and only if

ab = ba⇐⇒ ϕ(ab) = ϕ(ba)

⇐⇒ ϕ(a)ϕ(b) = ϕ(b)ϕ(a)

⇐⇒ ϕ(a) and ϕ(b) commute

⇐⇒ G′ is abelian.

4. For all a ∈ G,

G = ⟨a⟩ ⇐⇒ ϕ(an) = ϕ(e)

⇐⇒ ϕ(an) = e′

⇐⇒ ϕ(a)n = e′

⇐⇒ G′ = ⟨ϕ(a)⟩.

(5, 6, 7) leave as tutorial.

Theorem 1.16
Suppose that ϕ is an isomorphism from a group G onto a group G′. Then

1. ϕ−1 is an isomorphism from G′ onto G.

2. G is abelian if and only if G′ is abelian.

3. G is cyclic if and only if G′ is cyclic.

4. If K is a subgroup of G, then

ϕ(K) = {ϕ(k) | k ∈ K}

is a subgroup of G′.
G G′

K ϕ(K)

ϕ

≤

ϕ

≤

Proof. 1. Given that ϕ is a homomorphism, then for all a, b ∈ Gwe have

ϕ(ab) = ϕ(a)ϕ(b).

We need to prove that ϕ−1 is also a homomorphism, that is,

∀a′, b′ ∈ G′ ϕ−1(a′b′) = ϕ−1(a′)ϕ−1(b′).
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Certainly {
ϕ(a) = a′

ϕ(b) = b′
=⇒

{
ϕ−1(a′) = a

ϕ−1(b′) = b

Since ϕ is homomorphism,

ϕ(ab) = ϕ(a)ϕ(b)⇒ ϕ(ab) = a′b′

⇒ ab = ϕ−1(a′b′)

⇒ ϕ−1(a′)ϕ−1(b′) = ϕ−1(a′b′)

2. Refer to property (3) of previous theorem.

3. Refer to property (4) of previous theorem.

4. Given K is a subgroup of G, we want to show that ϕ(K) ≤ G′. The main idea is to use
one-step subgroup test:

G G′

ϕ−1(N) N

ϕ

≤ ≤

ϕ−1

• Clearly, e′ = ϕ(e) ∈ ϕ(K). Thus ϕ(K) is nonempty. (Since e ∈ K ̸= ∅ asK ≤ G).
• For all x, y ∈ ϕ(K),

x ∈ ϕ(K)⇒ x = ϕ(α1)

and
y ∈ ϕ(K)⇒ x = ϕ(α2)

where α1, α2 ∈ K. Compute

xy−1 = ϕ(α1)ϕ(α2)
−1

= ϕ(α1)ϕ(α
−1
2 )

= ϕ(α1α
−1
2 )

Since α1α
−1
2 ∈ K, thus ϕ(α1α

−1
2 ) in ϕ(K) =⇒ xy−1 ∈ ϕ(K).

Theorem 1.17 Sylow’s theorem
Let G be a finite group such that pn divides |G|, where p is prime. Then there exists a sub-
group of order pn.

Proof. Assume that |G| = pnm, where m = prk with gcd(p, k) = 1. Our central strategy is to
consider a cleverly chosen group action of G and prove one of the stabilizer subgroups has order
pn. We will need to heavily exploit the orbit-stabilizer theorem.

Let S be the set of all subsets of G of order pn. An element of S is an unordered n-tuple of
distinct elements inG. There is a natural action ofG on S by term-by-term composition on the left.
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Consider σ ∈ S. If we fix an ordering σ = {σ1, σ2, . . . , σpn} ∈ S, then

g(σ) := {g ∗ σ1, g ∗ σ2, . . . , g ∗ σpn}.

We first claim that | Stab(σ)| ≤ pn. To see this we define the function

f : Stab(σ)→ σ

g → g ∗ σ1
By the cancellation property for groups this is an injective map. Hence

|Stab(σ)| ≤ |σ| = pn.

On the other hand, observe that

|S| =
(
pnm
pn

)
=

pnm!

(pn)! (pnm− pn)!
=

pn−1∏
j=0

pnm− j

pn − j
= m

pn−1∏
j=1

pnm− j

pn − j
.

If 1 ≤ j ≤ pn − 1 then j is divisible by p at most n − 1 times. This means that pnm − j and pn − j
have the same number of p factors, namely the number of p factor of j. This means that

pn−1∏
j=1

pnm− j

pn − j

has no p factors. Hence pru, where gcd(p, u) = 1.
Now recall that S is the disjoint union of the orbits of our action of G on S. Hence there must

be an σ ∈ S such that
|Orbit(σ)| = pst

where s ≤ r and gcd(p, t) = 1. By the orbit-stabilizer theoremwe know that

| Stab(σ)| = pn+r−su

t

Because | Stab(σ)| ∈ N and u, t are coprime to p, we deduce that u/t is natural number. Hence
|Stab(σ)| ≥ pn.

For this choice of σ ∈ S, Stab(σ) is thus a subgroup of size pn.

Historically this is a slight extension of what is called Sylow’s First Theorem. There are two
more which describe the properties of such subgroups in greater depth.

1.8 Automorphisms

Definition 1.20 Automorphisms
An isomorphism from a group G onto itself is called an automorphism.
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Example 1.8.1. Let the 2-dimensional cartesian plane

R2 = {(a, b)|a, b ∈ R}.

Then
ϕ(a, b) = (b, a)

is an automorphism of the group R2 under componentwise addition.

Example 1.8.2. Compute Aut(Z10).
Solution For any α ∈ Aut(Z10) and for any k ∈ Z10. We define k 7→ kα(1) such that

1 7→ α1 : Z10 → Z10, α1(x) = x

3 7→ α3 : Z10 → Z10, α3(x) = 3x

7 7→ α7 : Z10 → Z10, α7(x) = 7x

9 7→ α9 : Z10 → Z10, α9(x) = 9x

In fact, Aut(Z10) is isomorphic to U(10) = {1, 3, 7, 9}. Aut(Z10) is defined as

Aut(Z10) = {α : Z10 → Z10 | α is an automorphism}.

·10 1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

◦ α1 α3 α7 α9

α1 α1 α3 α7 α9

α3 α3 α9 α1 α7

α7 α7 α1 α9 α3

α9 α9 α7 α3 α1

◀

Theorem 1.18
For every positive integer n, Aut(Zn) is isomorphic to U(n).

Example 1.8.3. The automorphisms of D3 is Aut(D3) = ⟨α, β⟩ ∼= D3, where{
α(r) = r

α(f) = rf

{
β(r) = r2

β(f) = f

All of these automorphisms are inner (of the form fx : g 7→ x−1gx). Two Cayley diagrams for
Aut(D3) are shown below.
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Definition 1.21 Inner automorphisms
Let G be a group, and let a ∈ G. The function ϕa defined by

ϕa(x) = axa−1 for all x ∈ G

is called the inner automorphism of G included by a.
When G is a group, we use Aut(G) to denote the set of all automorphisms of G and Inn(G)
to denote the set of all inner automorphisms of G.

Theorem 1.19
The set of automorphisms of a group and the set of inner automorphisms of a group are
both groups under the operation of function composition.

Proof. The set of inner automorphisms of G included by a is

Inn(G) = {ϕa|ϕa is an inner automorphism}.

Then satisfied the group properties:

1. We want to show ∀ϕa, ϕb ∈ Inn(G), ϕa ◦ ϕb ∈ Inn(G).
Compute (ϕa ◦ ϕb)(g) for all g in G,

(ϕa ◦ ϕb)(g) = ϕa(ϕb(g))

= ϕa(bgb
−1) (Defn. of inner automorphism)

= a(bgb−1)a−1

= (ab)g(b−1 a−1)

= (ab) g (ab)−1 (Socks-shoes property)
= ϕab(g) ∈ Inn(G)

Thus Inn(G) is closed under function composition.
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2. Next we want to show the associativity in Inn(G), that is,

∀ϕa, ϕb, ϕc ∈ Inn(G), ϕa ◦ (ϕb ◦ ϕc) = (ϕa ◦ ϕb) ◦ ϕc

we compute ϕa ◦ (ϕb ◦ ϕc).

[ϕa ◦ (ϕb ◦ ϕc)](g) = a(bc)g(bc)−1a−1

= (ab)cg c−1 b−1 a−1

= (ab)c g c−1 (ab)−1

= [(ϕa ◦ ϕb) ◦ ϕc](g)

3. Suppose e is the identity element of G, then ϕe(g) = ege−1 = g ∈ Inn(G). ϕe is the identity
of Inn(G).

4. For all ϕa ∈ Inn(G), there exists ϕa−1 ∈ Inn(G) such that

ϕa ◦ ϕa−1 = a(ag−1a−1)a−1

= (a a−1)g−1(a a−1)

= g−1

We have shown that the inner automorphisms are group. Is Inn(G) a subgroup of Aut(G)? Of
course it is. We are going to use one-step subgroup test to find out.

One-step subgroup test:

1. First of all, we want to show

∀ϕa, ϕb ∈ Inn(G), ϕa ◦ ϕb−1 ∈ Inn(G).

we compute

(ϕa ◦ ϕb−1)(g) = ϕa(bg
−1b−1)

= a(bg−1b−1)a−1

= (ab)g−1 (ab)−1

= ϕ(ab)−1 ∈ Inn(G)

1.8.1 Isomorphism theorems

Theorem 1.20 First Isomorphism theorem
Let f : G→ H be a homomorphism of groups with kernelK. Then the quotient groupG/K
is isomorphic to Im f .

Proof. Step 1: Check ifKer(ϕ) is a subgroup of G.
The main idea is to use one-step subgroup test to check ifKer(ϕ) ≤ G:
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1. Since ϕ is a homomorphism, then ϕ(e) = e; and so

e ∈ Ker(ϕ) ̸= ∅.

So Ker(ϕ) is nonempty.

2. For all g, h ∈ Ker(ϕ), we need to show that

gh−1 ∈ Ker(ϕ).

Given that g ∈ Ker(ϕ), then ϕ(g) = e. Also, h ∈ Ker(ϕ), then ϕ(h) = e. Now compute

ϕ(gh−1) = ϕ(g)ϕ(h−1)

= ϕ(g)ϕ(h)−1

= ee−1

= e ∈ Ker(ϕ).

Since gh−1 ∈ Ker(ϕ), thus Ker(ϕ) ≤ G.

Step 2: Check ifKer(ϕ)⊴G

We want to show aKer(ϕ)a−1 ⊆ Ker(ϕ) for all a ∈ G. This is equivalent to show if y ∈
aKer(ϕ)a−1, then y is in Ker(ϕ). Using normal subgroup test and check:

y ∈ aKer(ϕ)a−1 ⇒ a−1ya ∈ Ker(ϕ)

⇒ ϕ(a−1ya) = e

⇒ ϕ(a−1)ϕ(y)ϕ(a) = e

⇒ ϕ(y) = ϕ(a)ϕ(e)ϕ(a)−1

⇒ ϕ(y) = ϕ(a)ϕ(e)ϕ(a−1)

⇒ ϕ(y) = ϕ(aea−1) = ϕ(aa−1) = ϕ(e) = e

Thus y is in Ker(ϕ). So Ker(ϕ)⊴G.

G G′

Ker(ϕ) ϕ(G)

G/Ker(ϕ)

ϕ

⊴ ≤

∼=

Moreover, we still need to show ϕ(G) ≤ G′. ϕ(G) is the image of G that is define as

ϕ(G) = {ϕ(g) | g ∈ G}.

Againwe use one-step subgroup test to check. For all x, y ∈ ϕ(G), wewant to show xy−1 is in ϕ(G).
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Let x = ϕ(g1), and y = ϕ(g2)where g1, g2 ∈ G. Compute

xy−1 = ϕ(g1)ϕ(g
−1
2 )

= ϕ(g1g
−1
2 ) ∈ ϕ(G)

The map T : G/Ker(ϕ) → ϕ(G) (where T (gKer(ϕ)) = ϕ(g)) is one-to-one and onto. So T is
an isomorphism.

Theorem 1.21 Second Isomorphism Theorem
LetK be a proper subgroup of G, and N ◁ G. Then

1. NK = {nk | n ∈ N, k ∈ K} is a proper subgroup of G, write NK < G.

2. N ◁ NK andK ∩N ◁K.

3. K/(K ∩N) is isomorphism to NK/N .

G

NK

K N

K ∩N

≤

▷

▷

Proof. 1. Clearly NK ⊂ G. By using two-step subgroup test. For all nk, n′k′ ∈ NK

nkn′k′ = (nn′)(kk′) ∈ NK.

and
nk = e =⇒ nkk−1n−1 = e =⇒ (nk)−1 = k−1n−1 ∈ NK.

Thus NK < G.

2. Clearly N ◁ NK < G, since aN = Na whenever a in NK. N ◁ G implies that the mapping
π : G → G/N that maps a → Na is a surjective homomorphism. We define f : K → G/N
which k 7→ Nk whenever k inK. Apparently f is also homomorphism.
The kernel of f is

ker f = {k ∈ K | f(k) = Ne}
= {k ∈ K |Nk = Ne}
= {k ∈ K | k ∈ N}
= K ∩N.

ThusK ∩N ◁K.
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3. Find the image of f ,

Im f = {Nk ∈ G/N | k ∈ K}
= {Nnk ∈ G/N | n ∈ N, k ∈ K}
= {Nnk ∈ G/N | nk ∈ NK}
= NK/N.

By First Isomorphism Theorem, we now haveK/(K ∩N) is isomorphism to NK/N .

K

G G/N

K
N

f
N

N
kernel

Theorem 1.22 Subgroup of the quotient group G/N
Let N ◁ G, and let N ⊂ K < G. ThenK/N is a proper subset of G/N .

Proof. Clearly if N ◁K, then

K/N = {Nk | k ∈ K} ⊂ G/N = {Ng | g ∈ G}.

ThusK/N < G/N .

1.9 Lagrange Theorem

Theorem 1.23 Lagrange theorem
If G is a finite group and H is a subgroup of G, then |H| divides |G|.

Proof. Let a1H, a2H, . . . , arH denote the distinct left cosets and right cosets of H in G. For all
a ∈ G, ∃i s.t. aH = aiH and a ⊆ aH . Thus we can say that each members in G belongs to the one
of the cosets of aiH . Since |aiH| = |H|, so

G =

r⋃
k=1

akH =⇒ |G| =
r∑

k=1

|akH| =
r∑

k=1

|H| = r(|H|).
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Thus |H| divides |G|

Example 1.9.1. Given G is a group of order 6. Find all possible subgroups of G.
Solution Suppose H is a subgroup of G, H ≤ G, and so by Lagrange’s theorem we have

|H|
∣∣ |G| = 6

which implies |H| ∈ {1, 2, 3, 6}.
If the order of H is one, then H = ⟨e⟩ = {e}.
On the other hand, when |H| = 6 which means |H| = |G| = 6 and H = G; that is, H is trivial

subgroup.

Z6

⟨3⟩ ⟨2⟩

{0}

≤
≤

≤
≤

◀

Theorem 1.24
If G is a group of order p, where p is a prime. Then G is cyclic.

Proof. Suppose H is a subgroup of G and we apply Lagrange’s theorem, which we have

|H|
∣∣ |G| = p.

Assume H ̸= {e} and the order of H is greater than one, implies |H| = p and so |G| = |H| = p.
Hence, since H ̸= {e}, then there exists a ̸= e and a ∈ H . So using a to generate we obtained

H = G = ⟨a⟩

implies that H and G are both cyclic.

Example 1.9.2 (Tutorial). Draw a subgroup lattice of Z60.
Solution Suppose H is a subgroup of Z60. By Lagrange theorem,

|H|
∣∣ 60 = 22 · 3 · 5.

Thus,
|H| ∈ {1, 2, 4, 3, 6, 12, 5, 10, 20, 15, 30, 60}.

The lattice diagram is as follow:

CHAPTER 1. GROUPS | 45



Z60

⟨5⟩ ⟨3⟩ ⟨2⟩

⟨15⟩ ⟨10⟩ ⟨6⟩ ⟨4⟩

⟨30⟩ ⟨20⟩ ⟨12⟩

⟨0⟩

◀

1.10 External Direct Product

Definition 1.22 External direct product
Given groups (G, ∗) and (H,+), the external direct product of G,H written as G ⊕ H , is
the set of all ordered pairs (g, h) for which the the binary operation on G ⊕ H is defined
component-wise:

(g1, h1)⊕ (g2, h2) = (g1 ∗ g2, h1 + h2).

The resulting algebraic object satisfies the axioms for a group. Specifically:

• Associativity, the binary operation on G×H is indeed asscoiative.
• Existence of identity, the direct product has an identity element, namely (e1, e2), where e1 is

the identity element of G and e2 is the identity element of H .
• Existence of inverses, the inverse of an element (g, h) of G×H is the pair (g−1, h−1), where

g−1 is the inverse of g ∈ G, and h−1 is the inverse of h ∈ H .

Example 1.10.1. Find U(8)⊕ U(10).
Solution We have U(8) = {1, 3, 5, 7} and U(8) = {1, 3, 7, 9}. Then U(8) ⊕ U(10) is the cartesian
product of each element.

1 3 7 9
1 (1, 1) (1, 3) (1, 7) (1, 9)
3 (3, 1) (3, 3) (3, 7) (3, 9)
7 (7, 1) (7, 3) (7, 7) (7, 9)
9 (9, 1) (9, 3) (9, 7) (9, 9)

◀
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Theorem 1.25
The order of an element in a direct product of a finite number of finite groups is the least
common multiple of the orders of the components of the element. In symbols,

|(g1, g2, . . . , gn)| = LCM(ord(g1), ord(g2), . . . , ord(gn)).

Proof. First we consider the case where the direct product has two components.
Consider (g1, g2) ∈ G1 ⊕G2. Let s = LCM(ord(g1), ord(g2)) and t = |(g1, g2)|. Then

(g1, g2)
s = (gs1, g

s
2) = (e, e) =⇒ t|s.

Thus t ≤ s. But
(gt1, g

t
2) = (g1, g2)

t = (e, e) =⇒ g1|t and g2|t.

Thus t is a common multiple of ord(g1) and ord(g2), which means s ≤ t since

s = LCM(ord(g1), ord(g2)).

Hence s = t and | ord(g1, g2)| = LCM(ord(g1), ord(g2)).
For the general case, suppose the result holds for

G1 ⊕G2 ⊕ · · · ⊕Gn−1.

But G1 ⊕G2 ⊕ · · · ⊕Gn = (G1 ⊕G2 ⊕ · · · ⊕Gn−1)⊕Gn. So applying the previous argument, the
result holds for

G1 ⊕G2 ⊕ · · · ⊕Gn

by induction.

Theorem 1.26
LetG1 andG2 be two groups. LetH1 andH2 be normal subgroups ofG1 andG2 respectively
then

H1 ⊕H2 ⊴G1 ⊕G2.

Proof. SinceH1 is a subgroup of G1 andH2 is a subgroup of G2, thereforeH1 ⊕H2 is subgroup of
G1 ⊕G2.

Now let (h1, h2) ∈ H1 ⊕H2 and (g1, g2) ∈ G1 ⊕G2, then

(g1, g2)(h1, h2)(g1, g2)
−1 = (g1h1, g2h2)(g

−1
1 , g−1

2 )

= (g1h1g
−1
1 , g2h2g

−1
2 ) ∈ H1 ⊕H2.

g1h1g
−1
1 ∈ H1 and g2h2g

−1
2 ∈ H2 becauseH1 ⊴G1 andH2 ⊴G2. ThusH1⊕H2 ⊴G1⊕G2.
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1.11 Internal Direct Product

Definition 1.23
Let (G, ∗) be a group and let (H, ∗) and (K, ∗) be two subgroups of G. Then G is said to be
the internal direct product of H andK (write G = H ×K) if:

1. G = {h ∗ k | h ∈ H, k ∈ K}.

2. H ∩K = {e}where e is the identity in G.

3. h ∗ k = k ∗ h for all h ∈ H and for all k ∈ K.

Remark. If H,K ◁ G, then
H ×K ∼= H ⊕K.

Example 1.11.1. Consider H = {0, 2, 4} and K = {0, 3}, show that G = Z6 is the internal direct
product of H andK.
Solution 1. We check G = H ×K, compute

G = H ×K

= {0, 2, 4} × {0, 3}
= {0 +6 0, 0 +6 3, 2 +6 0, 2 +6 3, 4 +6 0, 4 +6 3}
= {0, 3, 2, 5, 4, 1} = Z6.

2. H ∩K = {0}, 0 is identity of Z6.

3. ∀a ∈ H, b ∈ K, a+6 b = b+6 a.
H andK are subgroups of G = Z6. Thus G is the internal direct product of H and K. ◀

Example 1.11.2. Z6 is internal direct product of Z2 and Z3.
Solution The direct product of Z2 and Z3 form a tuple,

Z2 × Z3 = {(x, y) | x ∈ Z2 and y ∈ Z3}
= {(0, 0), (0, 1), (0, 2)

(1, 0), (1, 1), (1, 2)}

For all (a1, b1), (a2, b2), we define the product as

(a1, b1) · (a2, b2) = (a1 +2 a2, b1 +3 b2).

For example, (1, 0) · (1, 2) = (1 + 0mod 2, 1 + 2mod 3) = (1, 0). Compute the Cayley table for all
elements in Z2 × Z3 (it is actually a 6× 6 Latin square)

Z2 × Z3

⟨(1, 0)⟩ ⟨(0, 1)⟩

⟨(0, 0)⟩
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· (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)

(0, 0) (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)
(0, 1) (0, 1) (0, 2) (0, 0) (1, 1) (1, 2) (1, 0)
(0, 2) (0, 2) (0, 0) (0, 1) (1, 2) (1, 0) (1, 1)
(1, 0) (1, 0) (1, 1) (1, 2) (0, 0) (0, 1) (0, 2)
(1, 1) (1, 1) (1, 2) (1, 0) (0, 1) (0, 2) (0, 0)
(1, 2) (1, 2) (1, 0) (1, 1) (0, 2) (0, 0) (0, 1)

Which is quite matches with the Cayley table of Z6.

Z6

⟨3⟩ ⟨2⟩

⟨0⟩

· 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

In fact, Z2 × Z3 is isomorphic to Z6. ◀

1.12 Finite Abelian groups

Theorem 1.27 Fundamental theorem of Finite Abelian groups
Every finite Abelian group is a direct product of cyclic groups of prime-power order. More-
over, the number of terms in the product and the orders of the cyclic groups are uniquely
determined by the group.
Since a cyclic group of order n is isomorphic to Zn. Then every finite Abelian group G is
isomorphic to a group of the form

Zp
n1
1
⊕ Zp

n2
2
⊕ · · · ⊕ Zp

nk
k

where i’s are not necessarily distinct primes and the prime powers pn1
1 , pn2

2 , . . . , pnk
k are

uniquely determined by G.

Look at groups whose orders have the form pk, where p is prime and j ≤ 4. There is one
group of order pk for each set of positive integers whose sum is k (such a set is called a partition
of k); that is, if k can be written as k = n1 + n2 + · · ·+ nt, where each ni is a positive integer, then
Zp

n1
1
⊕ Zp

n2
2
⊕ · · · ⊕ Zp

nt
t

is an Abelian group of order pk.
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Order of G Partitions of k Possible direct products of G
p 1 Zp

p2 2 Zp2

1 + 1 Zp ⊕ Zp

p3 3 Zp3

1 + 2 Zp ⊕ Zp2

1 + 1 + 1 Zp ⊕ Zp ⊕ Zp

p4 4 Zp4

1 + 3 Zp ⊕ Zp3

2 + 2 Zp2 ⊕ Zp2

1 + 1 + 2 Zp ⊕ Zp ⊕ Zp2

1 + 1 + 1 + 1 Zp ⊕ Zp ⊕ Zp ⊕ Zp

1.12.1 Greedy algorithm for an Abelian group of order pn

Here are the procedure to find all the possible abelian group of order pn. Note that p is prime.

1. Compute the orders of the elements of the group G.

2. Select an a1 of maximum order and define G1 = ⟨a1⟩. Set i = 1.

3. If |G| = |Gi|, stop. Otherwise, replace i by i+ 1.

4. Select an element ai of maximum order pk such that

pk ≤ |G|/|Gi−1|

and none of ai, api , ap
2

i , . . . , ap
k−1

i is in Gi−1, and define Gi = Gi−1 × ⟨ai⟩.

5. Return to step 3.

In the general case where |G| = pn1
1 pn2

2 . . . pnk
k , we simply use the algorithm to build up a

direct product of order pn1
1 , then another of order pn2

2 , and so on. The direct product of all these
pieces is the desired factorization of G.

Example 1.12.1. Let G = {1, 8, 12, 14, 18, 21, 31, 34, 38, 44, 47, 51, 52, 57, 64} under multiplication
modulo 65. Show that G is isomorphic to Z4 ⊕ Z4.
Solution Since G has order 16, we have

G ∼= Z16

∼= Z24 take p = 2, k = 4
∼= Z2 ⊕ Z23 Partitions of k = 1 + 3
∼= Z22 ⊕ Z22 Partitions of k = 2 + 2
∼= Z4 ⊕ Z4

◀
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Pseudocode 1: Greedy algorithm for an Abelian group of order pn
// Main body of greedy algorithm for finding Abelian group of order pk.

1 function Main greedy algorithm(G: FiniteGroup) → Product of CyclicGroups

2 a← find element with max order(G)
// Generated subgroup with first element a1 from a.

3 H ← ⟨a1⟩
4 i← 1
5 while |H| ≠ |G| do ▷ Greedy search for all cyclic groups
6 max cyclic order = |G|/|H|
7 ⟨ai⟩ = [ ]

8 while pk ≤ max cyclic order do
9 if ap

k−1

i /∈ H then ▷ Check if apk−1

i already in previous H
10 ⟨ai⟩.push(ap

k−1

i )
11 else
12 continue
13 k ← k + 1

14 H ← H × ⟨ai⟩
15 i← i+ 1

16 return H

// Compute the orders for all elements in group G.

17 function compute orders(G: FiniteGroup) → orders
18 orders = [ ]
19 for ai ∈ G do ▷ elements in G
20 if ai == identity(G) then
21 return 1 ▷ The order of identity element is one.
22 else
23 j ← 1

24 while aji ̸= e do
25 j ← j + 1 ▷ Find the order of each element.
26 orders.push(j)
27 return orders

// Filter out ai with maximum order, return a list of tuple (ai, |⟨ai⟩|).
28 function find element with max order(G: FiniteGroup) → Array<tuple(element, order)>

29 orders← max cyclic order(G)
30 return zip(G, orders).filter(( , o)→ o == Max(orders))

Example 1.12.2. Let G = {1, 8, 17, 19, 26, 28, 37, 44, 46, 53, 62, 64, 71, 73, 82, 89,
91, 98, 107, 109, 116, 118, 127, 134} under multiplication modulo 135. Show that G is isomorphic to
Z12 ⊕ Z2.
Solution Since G has order 24, and the prime factorization of 24 = 3 · 23. We have

G ∼= Z24

∼= Z3 ⊕ Z23

∼= Z3 ⊕ Z22 ⊕ Z2

∼= Z3 ⊕ Z4 ⊕ Z2

∼= Z3×4 ⊕ Z2 Since Zp ⊕ Zq
∼= Zpq

∼= Z12 ⊕ Z2

◀
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Tutorials

Exercise 1.12.1 Prove whether the following group G together with operation ∗ is a group.

1. Let ∗ defined on G = R by letting a ∗ b = ab ∀a, b ∈ R.

2. Let ∗ defined on G = 2Z by letting a ∗ b = a+ b ∀a, b ∈ 2Z.

3. Let ∗ defined on G = R∗ by letting a ∗ b =
√
ab ∀a, b ∈ R∗.

4. Let ∗ defined on G = Z by letting a ∗ b = max{a, b} ∀a, b ∈ Z.

Exercise 1.12.2 Determine whether the given set of matrices under the specified operation,
matrix addition or multiplication, is a group.

1. All 2× 2 diagonal matrices under matrix addition.

2. All 2× 2 diagonal matrices under matrix multiplication.

3. All 2× 2 diagonal matrices with no zero diagonal entry under under matrix multiplica-
tion.

4. All 2 × 2 diagonal matrices with all diagonal entries either 1 or −1 under matrix multi-
plication.

5. All 2× 2 upper-triangular matrices under matrix multiplication.

6. All 2× 2 upper-triangular matrices under matrix addition.

7. All 2× 2 upper-triangular matrices with determinant 1 under matrix multiplication.

8. All 2× 2 upper-triangular matrices with determinant either 1 or−1 under matrix multi-
plication.

Exercise 1.12.3 Prove whether

G =

{[
a b
c d

] ∣∣∣∣ ad− bc ̸= 0, a, b, c, d ∈ Z
}

is a group under matrix multiplication.

Exercise 1.12.4 Prove whether

G =

{[
a b
0 d

] ∣∣∣∣ ad ̸= 0, a, b, d ∈ Z
}
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is a non-abelian group under matrix multiplication.

Exercise 1.12.5 Prove whether

G =

{[
a b
0 a−1

] ∣∣∣∣ a ̸= 0, a, b ∈ Z
}

is an abelian group under matrix multiplication.

Exercise 1.12.6 Let (G, ∗) be a group and suppose that

a ∗ b ∗ c = e ∀a, b, c ∈ G.

Show that b ∗ c ∗ a = e.

Exercise 1.12.7 Show that if every element of the group G is its own inverse, then G is
abelian.

Exercise 1.12.8 Show that every group with identity e and x · x = x for all x ∈ G is abelian.

Exercise 1.12.9 Show that if G is a finite group with identity e and with even number of
elements, then there is an a ̸= e in G such that a ∗ a = e.

Exercise 1.12.10 Suppose G is a group such that

(ab)2 = a2 b2 ∀a, b ∈ G.

Show that G is abelian.

Exercise 1.12.11 Find the order of the following cyclic groups.

1. The subgroup of U(6) generated by cos

(
2π

3

)
+ i sin

(
2π

3

)
.

2. The subgroup of U(5) generated by cos

(
4π

3

)
+ i sin

(
4π

3

)
.

3. The subgroup of Z/4Z× Z/6Z generated by (1, 5).
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Exercise 1.12.12 Let a and b be elements of a group G. Show that if ab has finite order n,
then ba also has order n.

Exercise 1.12.13 Show that a group with no proper nontrivial subgroup is cyclic.

Exercise 1.12.14 Let G be a nonabelian group with center Z(G). Show that there exists an
abelian subgroup H of G such that Z(G) ⊂ H but Z(G) ̸= H .

Exercise 1.12.15 Find all subgroups of the following groups and draw the subgroups dia-
gram for the subgroups. Hence, list all orders of the subgroups of the given groups.

1. Z36

2. Z60

Exercise 1.12.16

1. Find all the proper nontrivial subgroups of Z2 × Z2 × Z2.

2. Find all the subgroups of Z2 × Z4 of order 4.

Exercise 1.12.17

1. Are the groups Z2 × Z12 and Z4 × Z6 isomorphic?

2. Are the groups Z8 × Z10 × Z24 and Z4 × Z12 × Z40 isomorphic?

Exercise 1.12.18 Find the conjugacy classes of dihedral group D8.

Exercise 1.12.19 Show that a group that has only finite number of subgroupsmust be a finite
group.

Exercise 1.12.20 Find all cosets of the subgroup 4Z of Z.
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Exercise 1.12.21 Compute the quotient group Z12/⟨2⟩.

Exercise 1.12.22 Show that if H is a subgroup of index 2 in a finte group G, then every left
coset of H is also a right coset of H .

Exercise 1.12.23 Let ϕ : G→ G be a mapping defined by

ϕ(x) = x3 ∀x ∈ G

where G = R \ {0} is a group defined under usual multiplication. Show that ϕ is a homomor-
phism, and hence find ker(ϕ).

Exercise 1.12.24 Let ϕ : G→ G be a mapping defined by

ϕ(x) = 5x ∀x ∈ G

where G = R \ {0} is a group defined under usual multiplication. Show that ϕ is a homomor-
phism, and hence find ker(ϕ).

Exercise 1.12.25 Let ϕ : G→ G be a mapping defined by

ϕ(x) = 7x ∀x ∈ G

where G = Z is a group defined under usual addition. Show that ϕ is a homomorphism, and
hence find ker(ϕ).

Exercise 1.12.26 Let G be a group and g an element in G. Consider the mapping ϕ : G→ G
defined as ϕ(x) = gxg−1. Show that ϕ is an isomorphism.

Exercise 1.12.27 Find ker(ϕ) for map ϕ : Z10 → Z20 such that ϕ(1) = 8.

Exercise 1.12.28 Find ker(ϕ) for map ϕ : Z × Z → Z × Z such that ϕ(1, 0) = (2,−3) and
ϕ(0, 1) = (−1, 5).

Exercise 1.12.29 Let ϕ : G → H be a group homorphism. Show that ϕ(G) is abelian if and
only if

xyx−1y−1 ∈ ker(ϕ) ∀x, y ∈ G.
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Exercise 1.12.30 Consider A the set of affine maps of R, that is

A = {f : x 7→ ax+ b, a ∈ R∗, b ∈ R}

1. Show that A is a group with respect to the composition of map.

2. Let
N = {g : x 7→ x+ b, b ∈ R}

Show that N ◁ A.

3. Show that the quotient group A/N is isomorphic to R∗.

Exercise 1.12.31 Let G = S4 and let

H = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}

1. Show that H is a normal subgroup of G.

2. Let H = {σ ∈ S4 | σ(4) = 4}. Define σ : H → Aut(H) by σ(τ) = στσ−1 for σ ∈ H . Prove
that

H ⋉σ H ∼= S4.

Exercise 1.12.32 Find (up to isomorphism) all abelian groups of order 45.

Exercise 1.12.33 Show that any group of order p2 is abelian.

Exercise 1.12.34 LetG be a group of order pq, where p and q are prime numbers. Show that
every proper subgroup of G is cyclic.

Exercise 1.12.35 If H,K ≤ G, show that H ∩K ≤ G.

Exercise 1.12.36 If N ◁ G and H ≤ G, show that NH ≤ G.

Exercise 1.12.37 If N1, N2 ◁ G, show that N1 ∩N2 ◁ G.

Exercise 1.12.38 If N ◁ G and H ≤ G, show that H ∩N ◁ G.
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2

Rings

Ring is an algebraic structure which is a set of elements with two operations: addition and multi-
plication.

Axiom 2.1 Rings
A ring R is a set with two binary operation, addition (usually denoted by +) and multipli-
cation (usually denoted by ab), such that for all a, b, c ∈ R.

1. Addition is commutative, a+ b = b+ a.

2. Associativity holds in addition, (a+ b) + c = a+ (b+ c).

3. There is an additive identity 0R. That is, there is an element 0R ∈ R such that

a+ 0R = a = 0R + a

for all a ∈ R.

4. There is an additive inverse −a ∈ R such that

a+ (−a) = 0R = −a+ a.

5. Associativity holds in multiplication, a(bc) = (ab)c.

6. Distributive law holds in R,
a(b+ c) = ab+ ac

and
(b+ c)a = ba+ ca.

Here are a few things you should take notes:

1. A ring is an Abelian group under addition, also having an associative multiplication that is
left and right distributive over addition.

2. Note that multiplication need not be commutative. When it is, we say that the ring is com-
mutative.

3. A ring need not have an identity under multiplication. A unity (or identity) in a ring is a
nonzero element that is an identity under multiplication.

4. A nonzero element of a commutative ring with unity need not have multiplicative inverse.
When it does, we say that it is a unit of the ring. Thus, x is a unit if x−1 exists.

5. We follow the following terminology and notation. If x and y belong to a commutative ring
R and x is nonzero, we say that x divides y and write x|y, if there exists an element c in R
such that y = xc.
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6. If x is an element from a group under the operation of addition and n is a positive integer,
nx means x+ x+ · · ·+ x︸ ︷︷ ︸

n times
, where there are n summands.

Example 2.0.1. The setZ of integers under ordinary addition andmultiplication is a commutative
ring with unity 1. The units of Z are 1 and −1.

Example 2.0.2. The setM2(Z) of 2×2matrices with integer entries is a noncommutative ringwith
unity

[
1 0
0 1

]
.

Example 2.0.3. The set of all continuous real-valued functions of a real variable whose graphs
pass through the point (1, 0) is a commutative ringwithout unity under the operations of pointwise
addition and multiplication, that is,

(f + g)(x) = f(x) + g(x)

and
(fg)(x) = f(x)g(x).

2.1 subrings

Theorem 2.1 Subring test
A nonempty subset S of the ring R is a subring if S is closed under subtraction and multi-
plication, that is,

1. S ̸= ∅.

2. a− b ∈ S ∀a, b ∈ S.

3. ab ∈ S ∀a, b ∈ S.

Definition 2.1 characteristic of ring
The characteristic of a ring R is the least positive integer n such that nx = 0 for all x ∈ R. If
no such integer exists, we say that R has characteristic 0. The characteristic of R is denoted
by char(R).

Example 2.1.1. S = {0, 2, 4} is a subring of Z6.
Solution Using subring test, the subtraction and multiplication form a group in S.

− 0 2 4
0 0 4 2
2 2 0 4
4 4 2 0

· 0 2 4
0 0 0 0
2 0 4 2
4 0 2 4
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Thus S ≤ Z6. ◀

Theorem 2.2
Let a, b and c belong to a ring R. Then

1. a0 = 0a = 0.

2. a(−b) = (−a)b = −(ab).

3. (−a)(−b) = ab.

4. a(b− c) = ab− ac and (b− c)a = ba− ca.

5. Furthermore, if R has a unity element 1, then (−1)a = −a.

6. (−1)(−1) = (−1)2 = 1.

Proof. We are going to prove (1), (2) and (3).

1.
a(0 + 0) = a0⇒ a0 + a0 = a0

⇒ (−a0) + a0 + a0 = (−a0) + a0

⇒ 0 + a0 = 0

⇒ a0 = 0.

2.
a0 = 0⇒ a(b+ (−b)) = 0

⇒ ab+ a(−b) = 0

⇒ −(ab) + ab+ a(−b) = −(ab) + 0

⇒ a(−b) = −(ab).

3.
(−a)(−b) = −(a(−b))

= −(a(−b))
= −(−(ab))
= ab.

Theorem 2.3 1. A ring has unique unity.

2. If a ring element has a multiplicative inverse, it is unique.
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2.2 Quotient rings, Ideals

2.2.1 Ideals

Definition 2.2 Ideals
A subring A of a ring R is called an ideal if for every r ∈ R and every a ∈ A both ra and ar
are in A.

So, a subring A of a ring R is an ideal of R if

rA = {ra | a ∈ A} ⊆ A

and
Ar = {ar | a ∈ A} ⊆ A

for all r ∈ R. An ideal A of R is called a proper ideal of R if A is a proper subset of R.

Lemma 2.1
Let I be a subring of a ring R. Then I is an ideal in R if and only if multiplication

(a+ I)(b+ I) = (ab+ I)

is a well-defined operation on the cosets of I in R.

Proof. (⇒) Assume that I is an ideal in R, and suppose that a1 + I = a2 + I and b1 + I = b2 + I .
This implies that a1 = a2 + k and b1 = b2 + j for some i, j ∈ I . Then we have

a1b1 = a2b2 + a2j + kb2 + kj.

Since I is a subring of R, and therefore it closed under multiplication, as well as addition, and
kj ∈ I . Since I is an ideal, a2j ∈ I and kb2 ∈ I , and so a2j + kb2 + jk ∈ I .

Therefore, a1b1 ∈ a2b2+ I and a1b1+ I = a2b2+ I . Thus, the multiplication on the set of cosets
of I is well-defined.

(⇐) Assume that the indicated operation is well-defined. We need to show that for all r ∈ R,
and for all x ∈ I , we have rx ∈ I and xr ∈ I . So we have x+ I = 0 + I = I . Hence

rx+ I = (r + I)(x+ I) = (r + I)(0 + I) = 0 + I = I.

Again we have xr ∈ I . Thus I is an ideal in R.

Theorem 2.4 Ideal test
A nonempty subset A of a ring R is an ideal of R provided

1. A ̸= ∅.

2. a− b ∈ Awhenever a, b ∈ A.

3. ra and ar are in A for all a ∈ A and r ∈ R.
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Example 2.2.1. For any ring R, {0} and R are ideals of R. The ideal {0} is called the trivial ideal.

Example 2.2.2. For any positive integer n, the set

nZ = {0,±n,±2n,±3n, . . .}

is an ideal of Z.
Solution We can show nZ⊴ Z using ideal test.

1. Since 0 ∈ Z, then n · 0 = 0 ∈ nZ ̸= ∅.
2. For all a, b ∈ nZ, we let a = nt1 and b = nt2 for t1, t2 ∈ Z. We have

a− b = nt1 − nt2 = n(t1 − t2) ∈ nZ

since t1 − t2 is also an integer.
3. Whenever a ∈ A and r ∈ R, let a = nt′, t′ ∈ Z. We have

ar = (nt′)r = n(t′r) ∈ nZ, t′r ∈ Z.

and
ra = r(nt′) = nrt′ = n(rt′) = n(t′r) = ar ∈ nZ.

Therefore nZ⊴ Z.

◀

Example 2.2.3. Let R be a commutative ring with unity and let a ∈ R. The set

⟨a⟩ = {ra | r ∈ R}

is an ideal of R called the principal ideal generated by a.
Solution Using ideal test to check

1. Since R is a ring, then 0R ∈ R and so 0R = 0R · a ∈ ⟨a⟩ ≠ ∅.
2. For all b, c ∈ ⟨a⟩, let b = r1a, c = r2a, where r1, r2 ∈ R. Then

b− c = r1a− r2a = (r1 − r2)a ∈ ⟨a⟩.

and r1 − r2 is in R.
3. For all a ∈ ⟨a⟩, r ∈ R, we let a = r′a and

ar = (r′a)r = a(r′r) ∈ ⟨a⟩.

where r′r ∈ R.
On the other hand,

ra = r(r′a) = a(rr′) = a(r′r) = ar ∈ ⟨a⟩.

Therefore ⟨a⟩ is a subring of R.

◀
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2.2.2 Quotient Rings

Theorem 2.5
Let R be a ring and let A be a subring of R. The set of cosets

R/A = {r +A | r ∈ A}

is a ring under the operations

• (s+A) + (t+A) = s+ t+A

• (s+A)(t+A) = st+A

if and only if A is an ideal of R.

Proof. Let R to be a ring, and let A ⊴ R. For all s+A, t+A in R/A we define addition as

⊞(s+A, t+A) := (s+A)⊞ (t+A) = s+ t+A

and multiplication as

⊙(s+A, t+A) := (s+A)⊙ (t+A) = st+A.

We want to show (R/A,⊞,⊙) is a ring.

1. (Closureness) Suppose that s+ A = s′ + A and t+ A = t′ + A for all s, s′, t, t′ ∈ R. First we
need to show

(s+ t) +A = (s′ + t′) +A.

We are going to express s, t in term of s′, t′ respectively.

s+A = s′ +A ⇒ s− s′ ∈ A

⇒ s− s′ = a1 ∈ A

⇒ s = a1 + s′ , a1 ∈ A. (♡)

and

t+A = t′ +A ⇒ t− t′ ∈ A

⇒ t− t′ = a2 ∈ A

⇒ t = a2 + t′ , a2 ∈ A. (♣)

Summing up (♡) together with (♣) we have

s+ t = (a1 + s′) + (a2 + t′) = a1 + a2 + s′ + t′, a1 + a2 ∈ A.

Subtracting s′ + t′ on both side of the equation yields

s+ t− (s′ + t′) = a1 + a2,=⇒ s+ t− (s′ + t′) ∈ A.

We have shown R/A closed under addition ⊞, we continue to proof

st+A = s′t′ +A.
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Which is equivalent to show R/A closed under the multiplication ⊙. Applying the results
that we found from (♡), (♣) we have

st− s′t′ = a1a2 + a1t
′ + s′a2

Is a1t′ in A? Of course, since a1 ∈ A, t′ ∈ R =⇒ a1t
′ ∈ A ◁ R. So as s′a2 ∈ A ◁ R.

2. (Existence of additive identity) For all s+A ∈ R/A, there exists e+A ∈ R/A such that

(s+A)⊞ (e+A) = s+A⇒ (s+ e) +A = 0 + s+A

⇒ s+ e = s

⇒ e = 0A.

Thus the additive identity is 0A +A.

3. (Existence of additive inverse) For all s+A ∈ R/A, there exists r +A ∈ R/A such that

(s+A)⊞ (r +A) = 0 +A⇒ (s+ r) +A = 0 +A

⇒ s+ r = 0

⇒ r = −s.

Thus the additive inverse of s+A is −s+A in R/A.

4. (Associativity of multiplication) For all s+A, t+A, u+A in R/A, compute

(s+A)⊙ [(t+A)⊙ (u+A)] = (s+A)⊙ (tu+A)

= s(tu) +A

= (st)u+A

= [(st) +A]⊙ (u+A)

= [(s+A)⊙ (t+A)]⊙ (u+A).

Associativity in ⊙ holds.

5. (Existence of unity) For all s+A ∈ R/A, there exists e′ +A ∈ R/A such that

(s+A)⊙ (e′ +A) = s+A⇒ se′ +A = s+A

⇒ se′ = s

⇒ e′ = 1A ∈ R.

The multiplicative identity is 1A +A in R/A.

6. (Existence of multiplicative inverse) For all s+A ∈ R/A, there exists r +A ∈ R/A such that

(s+A)⊙ (r +A) = 1A +A⇒ sr +A = 1A +A

⇒ sr = 1A

⇒ r = s−1.

The multiplicative inverse of s+A is s−1 +A in R/A, provided s−1 exists in R.
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7. (Distributive Law) For all s+A, t+A, u+A in R/A, compute

(s+A)⊙ [(t+A)⊞ (u+A)] = (s+A)⊙ [(t+ u) +A]

= s(t+ u) +A

= st+ su+A

= (st+A) + (su+A)

= (st+A)⊞ (su+A)

= (s+A)⊙ (t+A)⊞ (s+A)⊙ (u+A)

Distributive law holds in (R/A,⊞,⊙).

Therefore (R/A,⊞,⊙) is a ring.

Example 2.2.4. Z/4Z = {4Z, 1 + 4Z, 2 + 4Z, 3 + 4Z}

Solution The integers with multiple of 4 is

4Z = {. . . ,−8,−4, 0, 4, 8, 12, . . .}.

The left ideals are

1 +4 4Z = {. . . ,−7,−3, 1, 5, 9, 13, . . .}
2 +4 4Z = {. . . ,−6,−2, 2, 6, 10, 14, . . .}
3 +4 4Z = {. . . ,−5,−1, 3, 7, 11, 15, . . .}
4 +4 4Z = {. . . ,−4, 0, 4, 8, 12, 16, . . .} = 4Z

◀

Definition 2.3 Prime ideal
An ideal I in a commutative ring R is said to be prime if I ̸= R and whenever ab ∈ I , then
either a ∈ I or b ∈ I .

Lemma 2.2
Let R be a commutative ring with unity, and I be an ideal in R. Then I is a prime ideal in R
if and only if R/I is an integral domain.

Proof. R/I will therefore be an integral domain and only if it has no zero divisors. This condition
is equivalent to the condition that

(a+ I)(b+ I) = I ⇐⇒ a+ I = I or b+ I = I.

Thus R/I is an integral domain if and only if ab + I = I implies that a + I = I or b + I = I or, in
other words, if and only if ab ∈ I implies that a ∈ I or b ∈ I , which is to say that I is a prime ideal
in R.

Definition 2.4 Maximal ideal
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An ideal I in a ring R is said to be maximal if I ̸= R and whenever J is an ideal such that

I ⊂ J ⊂ R

then I = J or J = R.

Lemma 2.3
Consider R is a ring with nonzero unity, and M is an ideal such that M ̸= R. If R/M is a
division ring, thenM is a maximal ideal.

Proof. Suppose I is an ideal such that M ⊊ I ⊆ R. Then ∃a ∈ I s.t. a /∈ M . Then a +M ̸= 0 +M
and there exists b+M ∈ R/M such that

(a+M)(b+M) = 1R +M =⇒ (1R − ab) ∈M =⇒ ab+m = 1R

for some m ∈ M . Since ab ∈ I and m ∈ M ⊂ I . Also 1R ∈ I =⇒ I = R. Thus M is a maximal
ideal.

Theorem 2.6
Let M be an ideal in a commutative ring R with identity. Then M is a maximal ideal if and
only if the quotient ring R/M is a field.

Proof. (⇐) If R/M is a field, thenM is a maximal ideal by previous lemma.
(⇒) Since M ̸= R, R/I is a commutative ring with 1R + R ̸= 0R + M . Take any nonzero

a+M ∈ R/M, a /∈M and put

N := Ra+M = {ra+m | r ∈ R,m ∈M}.

Note that Ra is an ideal andM is also an ideal (Ra = ⟨a⟩). Thus Ra+M is ideal that includeM .
SinceM is maximal, this implies thatN = R =⇒ 1R ∈ N . ra+m = 1R for some r ∈ R,m ∈M .

Compute

ra+m = 1R ⇒ ra+M = 1R +M Since (ra− 1R) ∈M

⇒ (a+M)(r +M) = 1R +M.

We can now see that a+M is actually a unit in R/M . Hence R/M is a field.

Corollary 2.1
In a commutative ring R with unity, every maximal ideal is a prime ideal.

Proof. If I is a maximal ideal in R, then R/I is a field. Every field is an integral domain, so R/I is
also an integral domain, and I is a prime ideal.

CHAPTER 2. RINGS | 65



2.3 Ring homomorphism

Definition 2.5 Ring homomorphism
A ring homomorphism f from a ring (R,⊕,⊙) to a ring (S,⊞,⊡) is a mapping from R to S
that preserves the ring additions (⊕,⊞) and multiplications (⊙,⊡); that is,

f(a⊕ b) = f(a)⊞ f(b)

and
f(a⊙ b) = f(a)⊡ f(b)

A ring homomorphism that is one-to-one and onto is called the ring isomorphism.

Example 2.3.1. The map ϕ : Z→ Z3 defined by

ϕ(x) = x (mod 3) ∀x ∈ Z

is a ring homomorphism.
Solution Clearly, for all x, y ∈ Z

ϕ(x+ y) = (x+ y) (mod 3) = (xmod 3) + (y (mod 3))

= ϕ(x) +3 ϕ(y)

and

ϕ(xy) = (xy) (mod 3) = (xmod 3) · (y (mod 3))

= ϕ(x) ·3 ϕ(y)

This is an example of a map that respects both operations. ◀

Example 2.3.2. Consider the map ϕ : Z4 → Z6, ϕ(x) = 3x for all x in Z4. ϕ is a ring homomor-
phism.
Solution For all x, y ∈ Z, we check that

ϕ(x+ y) = 3(x+ y) (mod 6) = (3xmod 6) + (3y (mod 6))

= ϕ(x) +6 ϕ(y)

and

ϕ(xy) = 3(xy) (mod 6) = 9(xy) (mod 6) = (3xmod 6) · (3y (mod 6))

= ϕ(x) ·6 ϕ(y)

this map preserves both operations. So ϕ is a ring homomorphism.
In our calculation, we can have used the fact that 3 = 9 (mod 6). The jump from 3 to 9 modulo

6 can be better seem in

3 (mod 6) = ϕ(1) = ϕ(1 · 1) = ϕ(1)ϕ(1) = 3 · 3 = 9 (mod 6).
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◀

Example 2.3.3. For a, b ∈ R, let A(a, b) = M2(R) be defined by

A(a, b) =

[
a b
−b a

]
.

Let R = {A(a, b) | a, b ∈ R} ⊆M2(R). Then R ∼= C.
Solution Let ϕ : R→ C be defined by

ϕ(A(a, b)) = a+ bi ∈ C.

We show firstly that ϕ is a ring homomorphism.
For addition, we have

ϕ(A(a, b) +A(c, d)) = ϕ (A(a+ c, b+ d))

= (a+ c) + (b+ d)i

= (a+ bi) + (c+ di)

= ϕ (A(a, b)) + ϕ (A(c, d)) .

For multiplication, we have

ϕ(A(a, b) +A(c, d)) = ϕ

([
a b
−b a

] [
c d
−d c

])
= ϕ

([
ac− bd ad+ bc
−(ad+ bc) ac− bd

])
= ϕ (A(ac− bd, ad+ bc))

= (a+ bi)(c+ di)

= ϕ (A(a, b)) ϕ (A(c, d)) .

Now, ϕ is one-to-one and onto since ϕ (A(a, b)) = a + bi = 0 if and only if a = b = 0, and
Ker ϕ = {A(0, 0)} is trivial. ◀

Example 2.3.4. Show that the equation 2x3 − 5x2 + 7x− 8 = 0 has no solutions in Z.
Solution Let ϕ : Z → Z3 be the natural homomorphism ϕ(x) = x mod 3. Suppose that there is
an integer a ∈ Z such that

2a3 − 5a2 + 7a− 8 = 0.

Then
0 = ϕ(0) = ϕ(2a3 − 5a2 + 7a− 8) = 2ϕ(a)3 − 5ϕ(a)2 + 7ϕ(a)− 8.

Since −5 = 7 = −8 = 1 (mod 3) in Z3, we have

2ϕ(a)3 − 5ϕ(a)2 + 7ϕ(a)− 8 = 2ϕ(a)3 + ϕ(a)2 + ϕ(a) + 1

and thus 2b3 + b2 + b+ 1 = 0, where b = ϕ(a) in Z3.
However, one can easily check that no element b ∈ {0, 1, 2} in Z3 is a solution to this equation.

Therefore there is no such integer a ∈ Z to the original equation. ◀
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Example 2.3.5 (Tutorial). Show that the rings 2Z and 3Z are not isomorphic.
Solution Assume the contrary and let ϕ : 2Z → 3Z to be an isomorphism. Let us examine ϕ(2).
Note that for some k ∈ Z, ϕ(2) = 3k. Since ϕ is a homomorphism,

ϕ(k) = ϕ(2 + 2) = ϕ(2) + ϕ(2) = 3k + 3k = 6k.

But ϕ is a ring homomorphism and

ϕ(k) = ϕ(2 · 2) = ϕ(2)ϕ(2) = (3k)(3k) = 9k2.

This implies that 6k = 9k2 =⇒ k = 0 or k = 2
3 .

For k = 0 =⇒ ϕ(x) = 0 is not one-to-one and not onto. Also, k = 2
3 /∈ Z, and thus ϕ cannot be

an isomorphism. ◀

Example 2.3.6. Determine all ring homomorphism from Z to Z6.
Solution Since Z is generated from 1 by addition and subtraction, if a ring homomorphism f :
Z→ Z6, then for any a ∈ Z, we have

f(a) = am

wherem = f(1). Then f is linear, so

f(a) + f(b) = am+ bm = (a+ b)m = f(a+ b) ∀a, b ∈ Z.

So f is a ring homomorphism if and only if

0 = f(ab)− f(a)f(b) = abm− (am)(bm) = ab(m−m2)

for any a, b ∈ Z.
In particular, taking a = b = 1, we need to find m such that 0 = m − m2 (mod6). Working

modulo 6 one by one

0− 02 = 0− 0 = 0,1− 12 = 1− 1 = 0, 2− 22 = 2− 4 = 4 ̸= 0

3− 32 = 3− 9 = −6 = 0,4− 42 = 4− 16 = 0, 5− 52 = 5− 25 = 2 ̸= 0

The possible values of m are 0, 1, 3 and 4. So the homomorphisms are as follow

• f(a) = 0 (mod6), ∀a ∈ Z.

• f(a) = a (mod6), ∀a ∈ Z.

• f(a) = 3a (mod6), ∀a ∈ Z.

• f(a) = 4a (mod6), ∀a ∈ Z.

◀

Theorem 2.7 The first isomorphism for rings
Let f be a ring homomorphism from ringR ro S. Then the mapping fromR/ker(f) to f(R),
given by

r + ker(f)→ f(r)
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is an isomorphism. In symbols, R/ker(f) ∼= f(R).

Proof. Define a map f : R/K → Im f by

f(a+K) = f(a) ∀a ∈ R, a+K ∈ R/K.

1. Since f is well defined, so

a+K = b+K ⇒ a− b ∈ K

⇒ f(a− b) = 0S

⇒ f(a)− f(b) = 0S

⇒ f(a) = f(b)

2. f is injective since

f(a+K) = f(b+K)⇒ f(a) = f(b)

⇒ f(a− b) = 0S

⇒ a− b ∈ K

⇒ a+K = b+K.

3. f is surjective. For all f(a) ∈ Im f,∃a+K ∈ R/K such that f(a+K) = f(a).

4. f is homomorphism,

f(a+K + b+K)⇒ f((a+ b) +K)

⇒ f(a+ b)

⇒ f(a) + f(b)

⇒ f(a+K) + f(b+K).

f(a+K) · f(b+K)⇒ f(ab+K)

⇒ f(ab)

⇒ f(a) · f(b)
⇒ f(a+K) · f(b+K).

Thus f : R/K ∼= Im f as rings.

Example 2.3.7. Let ϕ : Z× Z→ Z3 be the ring homomorphism defined by

ϕ((a, b)) = bmod 3.

Then ker(ϕ) = Z× 3Z and (Z×Z)/(Z× 3Z) is isomorphic to Z3, which is a field. Thus Z× 3Z is a
maximal ideal of Z× Z.
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2.4 Polynomial rings

Definition 2.6
Let R be a commutative ring. We define

R[x] = {rnxn + rn−1x
n−1 + · · ·+ r1x+ r0 | ri ∈ R}. (2.1)

The letter x here can be thought of a variable or just a placeholder. Either way the familiar
structure allows us to add, subtract and multiply these as we do traditional polynomials even if
the ring were some strange abstract entity.

2.5 Factorization of polynomials

Theorem 2.8 Division algorithm
Let R be a ring with identity and f(x), g(x) ∈ R[x] with g(x) ̸= 0. Then there exists unique
polynomials q(x) and r(x) in R[x] such that

f(x) = q(x)g(x) + r(x) (2.2)

and deg(r) < deg(g). r(x) = 0 if there is no remainder.

Proof. The basic idea is to formalize the process of long division in an inductive sense. We omit the
details here. They’re boring here.

Example 2.5.1. In Z3 we can divide 2x2 + 1 into x4 + 2x3 + 2x+ 1. Then we have

x4 + 2x3 + 2x+ 1 = (2x2 + 1)(2x2 + x+ 2)

Theorem 2.9 Factor theorem
Let F be a field, a ∈ F and f(x) ∈ F [x]. Then a is a root (or zero) of f(x) if and only if x− a
is a factor of f(x).

Proof. (⇒) Assume that a ∈ F is a zero of f(x) ∈ F [x]. We wish to show that x − a is a factor of
f(x). To do so, apply the division algorithm. By division algorithm, ∃ unique polynomials q(x)
and r(x) such that

f(x) = (x− a)q(x) + r(x)

and the deg(r) < deg(x − a) = 1, so r(x) = c ∈ F , where c is a constant. Also, the fact that a is a
zero of f(x) implies f(a) = 0. So

f(x) = (x− a)q(x) + c =⇒ 0 = f(a) = (a− a)q(a) + c.

Thus c = 0, and x− a is a factor of f(x).
(⇐) On the other way, we want to show
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Definition 2.7 Algebraically closed
Given F a field, we call F algebraically closed if every f ∈ F [x] such that deg(F ) > 0 has a
root in F .

Example 2.5.2. Show that x2 + 3x− 4 ∈ Z12[x] has 4 roots.
Solution We list down all the values of f(x) = x2 + 3x− 4 for x = 0, 1, . . . , 11.

x 0 1 2 3 4 5 6 7 8 9 10 11
x2 + 3x− 4 (mod 12) 8 0 6 2 0 0 2 6 0 8 6 6

which now we can see: x2 + 3x− 4 has 4 zeros in Z12[x]. Thus, a polynomial of degree n can
have more than n roots in a ring. The problem is that Z12 is not a domain: (x+ 4)(x− 1) = 0 does
not imply one of the factors must be zero. ◀

Example 2.5.3. Show that the polynomial 2x3 +3x2− 7x− 5 can be factored into linear factors in
Z11[x].
Solution We can use synthetic division,

2 3 = −8 −7 = 4 6
−2 −10 −6 −1

2 −10 = 1 −6
−4 6 −2

2 −3

Thus, 2x3 + 3x2 − 7x− 5 = (x+ 1)(x+ 2)(2x− 3) in Z11[x]. ◀

2.5.1 Irreducibility tests

There are various methods to check if a polynomial in Z[x] is irreducible in Q[x].

Theorem 2.10 Rational root test
Let

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 (⋆)
be a polynomial with integers coefficients. If r ̸= 0 and the rational number r/s (in lowest
terms) is a root of f(x), then r|a0 and s|an.

Proof. Plug x = r/s into (⋆) and equating with zero. The equation is now

an

(r
s

)n
+ an−1

(r
s

)n−1
+ · · ·+ a1

(r
s

)
+ a0 = 0.

Again multiplying sn on both sides

anr
n + an−1r

n−1s+ · · ·+ a1rs
n−1x+ a0s

n = 0.
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Factoring r out and moving a0s
n to the right-hand side. We obtained

r(anr
n−1 + an−1r

n−2s+ · · ·+ a1s
n−1x) = −a0sn.

Since gcd(r, s) = 1, thus r|a0 and similarly s|an.

Example 2.5.4. The polynomial f(x) = 2x4 + x3 − 21x2 − 14x+ 12 is reducible in Q[x].
Solution If r/s is a root of f(x), where r|12 and s|2. Thus the possible roots are

±1, ±2, ±3, ±4, ±6, ±12, ±1

2
, ±3

2
.

In fact, f(x) = (x+ 3)
(
x− 1

2

)
(2x2 − 4x− 8) ∈ Q[x]. ◀

Example 2.5.5. The polynomial g(x) = x3 + 4x2 + x− 1 is irreducible in Q[x].
Solution The possible roots are {−1, 1}. However

g(1) = 1 + 4 + 1− 1 = 5 and g(−1) = −1 + 4− 1− 1 = 1

So g(x) has no root and deg g(x) = 3. Thus g(x) is irreducible over Q[x]. ◀

Theorem 2.11 Mod p Irreducibility test
Let p be a prime and let f(x) ∈ Z[x] with degree 1 or greater. Let f ∈ Zp[x] obtained by
reducing all of f(x)’s coefficients mod p. Then if

deg(f) = deg(f) (2.3)

and f is irreducible over Zp then f(x) is irreducible over Q.

Proof. Assume that f(x) = p(x)q(x) in Z[x]. Since ϕ : Z[x] → Zp[x] defined by ϕf(x) = f(x) is a
ring homomorphism. So

f(x) = p(x)q(x) = p(x)q(x).

If p ∤ ak, then p does not divide the leading coefficients of p(x) and q(x). Thus deg p(x) = deg p(x)
and deg q(x) = deg q(x).

Example 2.5.6. The polynomial f(x) = x5 + 8x4 + 3x2 + 4x+ 7 is irreducible in Q.
Solution We define

f(x) = x5 + x2 + 1 ∈ Z2[x].

By rational root test, the only possible root is 0.1 from R but it is not an inetger. There are several
quadratic polynomials in Z2[x] such as

x2 + x+ 1, x2 + 1, x2 + x, x2.

Since x2 + 1, x2 + x, x2 both have roots, they cannot be factor of f . The only possible factor of f is
x2 + x+ 1. Thus

x5 + x2 + 1 = (x2 + x+ 1)(x3 + ax2 + bx+ c).
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Equating coefficients of both sides, we have

1 + a = 0

1 + a+ b = 0

a+ b+ c = 0

b+ c = 0

c = 1

.

On solving yields a = −1 = 1(mod 2), b = 0 and c = 1 but b+ c ̸= 0 and is contradiction. So f(x)
does not has a quadratic factor. It means that f(x) is irreducible in both Z2[x] and Z. So f(x) is also
irreducible in Q[x]. ◀

Theorem 2.12 Eisenstein’s criterion
Let f(x) = a0 + a1x+ a2x

2 + · · ·+ anx
n ∈ Z[x] \ {0}. If there is a prime number p such that

p ∤ an, but p|an−1, . . . p|a2 and p2|a0. Then f(x) is irreducible over Q.

Proof. Suppose that f(x) is reducible over Q then

f(x) = g(x)h(x)

and g(x), h(x) are nonconstant polynomials.
Let

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

g(x) = brx
r + br−1x

r−1 + · · ·+ b1x+ b0,

h(x) = csx
s + cs−1x

s−1 + · · ·+ c1x+ c0.

Since p|a0 = b0c0 =⇒ p|b0 or p|c0, and p2 ∤ a0. This implies that p divides only one of them. Assume
that p|b0 and p ∤ c0, then

p|a0 = b0c1 + b1c0.

Since p|b0c1 and p ∤ c0 =⇒ p|b1. Assume that p|bi ∀0 ≤ i < m for somem ≤ r. Then

p|am =
∑

i+j=m
j≤s

bicj =⇒ p|bmc0 =⇒ p|bm.

By mathematical induction, p|br. Thus p|an = brcs. This contradicting the fact that f(x) is re-
ducible.

Example 2.5.7. x9 + 5 is irreducible in Q[x] with p = 5.

Example 2.5.8. x17 + 6x13 − 15x4 + 3x2 − 9x+ 12 is irreducible in Q[x] with p = 3.

Example 2.5.9. xn + 5 is irreducible in Q[x] for all n ≥ 1. There are irreducible polynomials of
every degree in Q[x].
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Corollary 2.2
For any prime p, the p-th cyclotomic polynomial

Φp(x) = xp−1 + xp−2 + · · ·+ x+ 1

is irreducible over Q.

Proof. Let ζ = e2πi/n. Then ζ, ζ2, . . . , ζn are the n-th roots of unity. They form the vertices of a
regular n-gon in the complex plane. If gcd(a, n) > 1 then ζa is a root of unity of order n/ gcd(a, n) <
n, but if gcd(a, n) = 1 then ζ is not a root of lower order, and in this case we call ζa a primitive n-
th root of unity. We define the n-th cyclotomic polynomial Φn(x) to be the monic polynomial of
degree ϕ(n)whose roots are the primitive n-th root of unity:

Φn(x) =
n∏

a=1
gcd(a,n)=1

(x− ζa). (2.4)

The first few cyclotomic polynomials are as follows:

n =

1 Φ1(x) = x− 1

2 Φ2(x) = x+ 1

3 Φ3(x) = x2 + x+ 1

4 Φ4(x) = x2 + 1

5 Φ5(x) = x4 + x3 + x2 + x+ 1

6 Φ6(x) = x2 − x+ 1

7 Φ7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1

8 Φ8(x) = x4 + 1

9 Φ9(x) = x6 + x3 + 1

10 Φ10(x) = x4 − x3 + x2 − x+ 1

11 Φ11(x) = x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1

12 Φ12(x) = x4 − x2 + 1

13 Φ13(x) = x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1

14 Φ14(x) = x6 − x5 + x4 − x3 + x2 − x+ 1

15 Φ15(x) = x8 − x7 + x5 − x4 + x3 − x+ 1

16 Φ16(x) = x8 + 1

Let p denote a given prime number. For any polynomial f(x)with integral coefficients let f(x)
be the polynomial whose coefficients are the residue classes (mod p) determined by the coefficients
of f(x). Thus the assertion f = g means that there is a polynomial h(x) with integral coefficients
such that f(x) = ph(x).

Lemma 2.4
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(Schönemann, 1846) Let A(x) be a monic polynomial with integral coefficients, for instance

A(x) = xn + an−1x
n−1 + · · ·+ a0 =

n∏
i=1

(x− αi).

Let p be a prime, and put
C(x) =

n∏
i=1

(x− αp
i ).

Then C = A.

Proof. Let σk(α) denote the k-th symmetric function of αi. When σk(α)
p is expanded by the multi-

nomial theorem, all coefficients except the extreme ones are divisible by p. That is,

σk(α1, α2, . . . , αn)
p − σk(α

p
1, α

p
2, . . . , α

p
n)

p

is a symmetric polynomial in the α, with integral coefficients, and hence by the symmetric function
theorem the quantity must be a rational integer.

Lemma 2.5
Put f(x) = xn − 1. Then f is a squarefree if and only if p ∤ n.

Proof. By previous lemma we can see that if p ∤ n. Then gcd(f, f
′
) = 1, and hence that f is square-

free. On the other hand, if p|n, say n = mp for some integerm, then

f = (xm − 1)p

and hence f is not squarefree.
Let Φn(x) denote the n-th cyclotomic polynomial. Since Φn|f , it follows from the above that if

p ∤ n, then Φn is also squarefree.

Theorem 2.13
(Kronecker, 1854) The polynomial Φn(x) is irreducible over Q.

Proof. Suppose that A and B are monic polynomials with rational coefficients such that Φn = AB,
and suppose also that degA > 0. We know that A and B have integral coefficients. Let Z denote
the roots of A. Let C be the monic polynomial whose roots are the numbers ζp for ζ ∈ Z. Here p is
an arbitrary prime not dividing n. Our first step is to show that A = C.

Since themap ζ 7→ ζp merely permutes the roots ofΦn, we know thatC|Φn. LetG = gcd(B,C).
Then G|B and G|C. But A = C by previous lemma, and hence G

2|AB. But Φn is squarefree, by
previous lemma. Hence G = 1, so G = 1, and consequently C|A. But C and A have the same
degree, so in fact A = C.

Now let ζ be a root ofA, and ζ ′ a root ofΦn. Then there exists a positive integer a, gcd(a, n) = 1,
such that ζ ′ = ζa. We factor a, a = p1p2 . . . pk. Since ζ is a root of A, it follows from the argument
above that ζp1 is also a root of A. Then by a second application of the above argument, we see that
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ζp1p2 is also a root of A. Continuing in this manner, we deduce that ζ ′ is a root of A. Since this is
valid for every root ζ ′ of Φn, we conclude that A = Φn. Hence Φn is irreducible.

Theorem 2.14
Let F be a field and let p(x) ∈ F [x]. Then ⟨p(x)⟩ is a maximal ideal in F [x] if and only if p(x)
is irreducible over F .

Proof. Suppose ⟨p(x)⟩ is a maximal ideal in F [x]. We know that p(x) ̸= 0 and p(x) is not a unit since
neither {0} nor ⟨1F ⟩ = F [x] is a maximal ideal in F [x]. Let

p(x) = g(x)h(x)

be a factorization. Then ⟨p(x)⟩ ⊆ ⟨g(x)⟩ ⊆ ⟨F [x]⟩ and since ⟨p(x)⟩ is maximal we either have
⟨g(x)⟩ = ⟨p(x)⟩ or ⟨g(x)⟩ = F [x]. In the first case we get

Theorem 2.15 Fundamental Theorem of Algebra
Every nonconstant polynomial in C[x] has a root in C.

Remark. The field C is algebraically closed.

Corollary 2.3
A polynomial is irreducible in C[x] if and only if it has a degree 1.

Proof. All linear equation with degree 1 only have one root in R.

Corollary 2.4
Every nonconstant polynomial f(x) of degree n can be written in the form

c(x− a1)(x− a2) . . . (x− an)

for some c, a1, a2, . . . , an ∈ C. This factorization is unique except for the order of the factors.

Proof. By the fundamental theorem of algebra,

f(x) = (r1x+ s1)(r2x+ s2) . . . (rnx+ sn)

= r1 r2 . . . rn(x+ s1r
−1
1 )(x+ s2r

−1
2 ) . . . (x+ snr

−1
n ).

Since f(x) has n unique roots, factorization is also unique.

Lemma 2.6
If f(x) is a polynomial in R[x] and a + bi is a root of f(x) in C, then a − bi is also a root of
f(x).
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Proof. Let z = a + bi and the conjugate z = a − bi. Define a map φ : C[x] → C[x] by φf(x) = f .
Bijective is trivial in φ, e.g. φ(f + g) = f + g and φ(fg) = f g since

(a+ bi)(c+ di) = (a+ bi) (c+ di).

If f(x) has a root z then f(x) will has a root z. If coefficients of f(x) are all real numbers, then
f(x) = f(x). Thus f(x) has a root z.

Theorem 2.16
A polynomial f(x) is irreducible in R[x] if and only if f(x) is a first-degree polynomial or
f(x) = ax2 + bx+ cwith b2 − 4ac < 0.

Proof. In C[x],
f(x) = c(x− a1)(x− a2) . . . (x− an).

If ai = c+ di, aj = c− di for some 1 ≤ j ≤ n. The product of the conjugates are

(x− ai)(x− aj) = (x− c− di)(x− c+ di) = x2 − 2cx+ c2 + d2 ∈ R[x].

Thus we can pair them and so f(x) can be split by irreducible polynomials whose degree is either
1 or 2.

Now we knew every irreducible polynomial has a degree 1 or 2. When its degree is 2, then

f(x) = ax2 + bx+ c ∀a, b, c ∈ R (♣)

We now continue to work on the ”formula” to solve x. Completing the square on (♣)

ax2 + bx+ c = 0⇒ a

[
x2 +

b

a
x+

(
b

2a

)2
]
−
(

b

2a

)2

= 0

⇒
(
x+

b

2a

)2

=
b2 − 4ac

4a2

⇒ x+
b

2a
= ±
√
b2 − 4ac

2a

⇒ x =
−b±

√
b2 − 4ac

2a
, a ̸= 0

Now we can take a look on determinant∆ = b2 − 4ac. If∆ < 0, the two roots will be in C \R, else
the two roots are in R. (Either ∆ > 0 or ∆ = 0). Hence the first-degree polynomial or quadratic
polynomial is irreducible in R[x].

Corollary 2.5
Every polynomial f(x) of odd degree in R[x] has a root in C.

Proof. Consequently, we can tell if a polynomial inR[x] orC[x] is irreducible without any elaborate
tests.
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2.6 Integral Domains

Let R be a commutative ring. A zero divisor is a nonzero element a ∈ R such that

ab = 0 (2.5)

for some nonzero b ∈ R. The most familiar integral domain is Z. It is a commutative ring with
unity one. If a, b ∈ Z and ab = 0, then either a = 0 or b = 0.

Definition 2.8
A ring with unity 1 having no zero divisors is an integral domain.

Lemma 2.7
Fields are integral domain

Proof. Let F be a field. We want to show that F has no zero divisors. Suppose ab = 0 and a ̸= 0.
Then a must has an inverse a−1 such that a−1 ab = a−1 · 0 =⇒ b = 0. Therefore, F has no zero
divisors, and so F is an integral domain.

Lemma 2.8
If R is an integral domain, then the characteristic of R is either 0 or a positive prime.

Solution Suppose not, suppose R has characteristic n = abwith 1 < a < b < n. Then

(1R + · · ·+ 1R︸ ︷︷ ︸
a times

)(1R + · · ·+ 1R︸ ︷︷ ︸
b times

) = ab1R = n1R = 0.

Since R is an integral domain, it is either a · 1R = 0 or b · 1R = 0. This is contradicts with our
assumption that n is not prime. ◀

Definition 2.9
If F is a field, then the only ideals are {0} and F itself.

Proof. Let F be a field, and let I ⊂ F be an ideal. Assume I ̸= {0}, and find x ̸= 0 ∈ I . Since F is a
field, x is invertible; Since I is an ideal, 1 = x−1 · x ∈ I . Therefore I = F .

Example 2.6.1. The extended ring

Q[
√
2] = {a+ b

√
2 | a, b ∈ Q}

is a field and that every nonzero element has a multiplicative inverse.
Solution This is clearly a ring. To show that every nonzero element has a multiplicative inverse.
Consider a+ b

√
2 ̸= 0 ∈ Q[

√
2]. The multiplicative inverse is

1

a+ b
√
2
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Then multiplying top and bottom by conjugate, we have

a− b
√
2

(a+ b
√
2)(a− b

√
2)

=
a− b

√
2

a2 − 2b2
.

Now we want to show a2 − 2b2 ̸= 0.
If a = 0 and b ̸= 0 or if a ̸= 0 and b = 0, then a2 − 2b2 ̸= 0. Since a2 − 2b2 ̸= 0, the only other

possibility is a, b ̸= 0.
Thus, a2 = 2b2with a, b ̸= 0. Wemay assume that a and b are integers – in fact, nowwe can see 2

divides 2b2, so 2 | a2 =⇒ 2 | a. So a = 2c for some integer c. Plugging in gives 4c2 = 2b2 =⇒ 2c2 = b2.
It follows that every nonzero element of Q[

√
2] is invertible, so Q[

√
2] is a field. ◀

Example 2.6.2 (Non-example). M2(Z) =
{[

a b
c d

] ∣∣∣∣ a, b, c, d ∈ Z
}
is not an integral domain.

Solution Choose
A =

[
1 0
0 0

]
, B =

[
0 0
1 0

]
fromM2(Z), and compute the matrix product

AB =

[
1 0
0 0

] [
0 0
1 0

]
=

[
0 0
0 0

]
= 0.

A,B are zero divisors but none of them are zero. ThusM2(Z) is not an integral domain. ◀

Theorem 2.17
A finite integral domain is a field

Proof. Let D be a finite integral domain. Since D is an integral domain, then D is a commutative
ring with unity, and hence we need to show that D is a field. In order to do this, we want to show
∀a ̸= 0 ∈ D, ∃a−1 ∈ D such that

a · a−1 = 1D = a−1 · a.

Without loss of generality, we let
D = {a, a2, a3, . . . , at}

where a ̸= 0 for some t ∈ N. Consider two elements ai, aj from D, we have

ai = aj ⇒ ai−j = 1D

⇒ a ai−j−1 = 1D

⇒ a−1 = ai−j−1

⇒ a · a−1 = ai−j = 1D.

and the multiplication is commutative, therefore D is a field.
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Remark.
if Zp is a field =⇒ Zp has no zero divisors.

=⇒ Zp is an integral domain.

=⇒ |Zp| = p is prime and is finite.

2.7 Principal Ideal Domain

Definition 2.10
An integral domain R is called a principal ideal domain (or PID) if every ideal in R is
principal.

Example 2.7.1. The integers Z and polynomial rings over fields are principal ideal domains.

Theorem 2.18
If F is a field then F [x] is a PID.

Proof. We know F [x] is integral domain since F is an integral domain. Let I be an ideal of F [x].
Case 1: If I = {0} then I = ⟨0⟩ and we are done.
Case 2: If I ̸= {0} let g(x) be a nonzero polynomial of minimal degree in I (which exists by

well-ordering). If g(x) is constant then g(x) = α ∈ F and then I = F = ⟨α⟩ because for any r ∈ F
we have

r = rα−1α ∈ ⟨α⟩.

Suppose then that g(x) is not constant, we claim I = ⟨g(x)⟩. Since g(x) ∈ I we have ⟨g(x)⟩ ⊆ I . We
claim I ⊆ ⟨g(x)⟩. Let f(x) ∈ I . By the division alogrithm, we can write

f(x) = q(x)g(x) + r(x)

with 0 ≤ deg(r(x)) < deg(g(x)). Since

r(x) = f(x)− q(x) g(x)

we have r(x) ∈ I and the fact that g(x) is a nonzero polynomial of minimal degree implies that
r(x) = 0 and so f(x) = q(x) g(x) =⇒ f(x) ∈ ⟨g(x)⟩.

2.8 Unique Factorization Domain
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Definition 2.11
An integral domain D is a unique factorization domain (UFD in short) if

1. Every nonzero element ofD that is not a unit can bewritten as a product of irreducibles
of D, and

2. The factorization into irreducibles is unique up to associates and the order in which
the factors appear.

Theorem 2.19
Every PID is a UFD.

Proof. Let R be a PID and suppose that a nonzero element a of R can be express in two different
ways as a product of irreducibles. Suppose

a = p1p2 · · · pr and a = q1q2 · · · qs

where each pi and qj is irreducible in R, and s ≥ r. Then p1 divides the product q1, q2, · · · , qs and
so p1|qj for some j, as p1 is prime. After reordering the qj we can consider p1|q1. Then q1 = u1 p1
for some unit u1 of R, since q1 and p1 are both irreducible. Thus

p1p2 · · · pr = u1p1q2 · · · qs

and cancelling p1 on both side
p2 · · · pr = u1q2 · · · qs.

Continuing this process we reach

1 = u1u2 . . . ur qr+1 . . . qs.

Since none of the qj is a unit, this means that r = s and p1p2 · · · pr are associates of q1q2 · · · qr in
some order. Thus R is a unique factorization domain.

Theorem 2.20
Every field is a UFD.

Proof. Every field F is a UFD because it is PID⇒ it is an integral domain and every nonzero is a
unit, and it contains no prime.

2.9 Euclidean Domains

Definition 2.12
An integral domainD is called a Euclidean Domain if there is a function d (called the mea-
sure) from the nonzero elements of D to the positive integers such that

1. d(a) ≤ d(ab) for all nonzero a, b ∈ D; and
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2. If a, b ∈ D, b ̸= 0, then there exists elements q, r ∈ D such that

a = bq + r

where r = 0 or d(r) < d(b).

Example 2.9.1. The ring Z is a Euclidean domain with d(a) = |a|.

Example 2.9.2. Let F be a field. Then F [x] is a Euclidean domain with d(f(x)) = deg f(x).

Example 2.9.3. Gaussian integers Z[i] is a Euclidean domain with

d(a+ bi) = a2 + b2.

Theorem 2.21
Every Euclidean domain is a PID.

Proof. Let E be a Euclidean domain. Consider an ideal I of E. If I = {0}, then I = ⟨0⟩.
Let I ̸= {0}. ThenN = {d(x) |x ∈ I, x ̸= 0} is a nonempty set of nonnegative integers; and so,

by the well-ordering principle it has the least element.
Let a ∈ I, a ̸= 0 such that d(a) is the least element of N . i.e. d(a) ≤ d(x) for all nonzero x in I .

We want to show I = Ea. Since a ∈ I , it follows that

Ea ⊆ I.

Let b ∈ I . Since E is a Euclidean domain, there exist q, r ∈ E such that

b = aq + r, where r = 0 or d(r) < d(a).

If r ̸= 0, then r = b − aq ∈ I shows that d(r) ∈ N ; and since d(r) < d(a), this contradicts the
minimality of d(a) inN . Therefore, r = 0 and so b = aq ∈ Ea. Thus I ⊆ Ea and hence I = Ea.

Tutorials

Exercise 2.9.1 For each of the following, decide whether the indicated operations on the set
will form a ring. If a ring is not formed, state the reason why this is the case. If a ring is formed
state whether the ring is commutative, whether it has unity, and whether it is a field.

1. nZ, under the usual addition and multiplication.

2. nR+, under the usual addition and multiplication.

3. nZ× Zwith addition and multiplication by components.

4. nZ× 2Zwith addition and multiplication by components.
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5. {a+ b
√
5 | a, b ∈ Q}with the usual addition and multiplication.

6. {ri | r ∈ R}with the usual addition and multiplication where i2 = −1.

Exercise 2.9.2 Let α = 3
√
5 and Z[α] = {a + bα + cα2 | a, b, c ∈ Z}. Prove whether Z[α] is a

subring of R.

Exercise 2.9.3 Let X be some arbitrary set, and P (X) be the set of all subsets of X . Define
operators on P (X) as follows, where a, b in P (X):

a+ b = (a ∪ b) \ (a ∩ b)

and
ab = a ∩ b.

Show that P (X) is a commutative ring.

Exercise 2.9.4 Let A be the set A = {a+ bi | a, b ∈ Q}where i2 = −1. Here,

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

and
(a+ bi)(c+ di) = (ac− bd) + (ad− bc)i.

Show that A is a field.

Exercise 2.9.5 Show that the rings 2Z and 3Z are not isomorphic.

Exercise 2.9.6 Show that a ring R has no nonzero nilpotent element if and only if 0 is the
only solution of x2 = 0 in R.

Exercise 2.9.7 Show that if R is a ring with unity and N is an ideal of R such that N ̸= R,
then R/N is a ring with unity.

Exercise 2.9.8 If F is a field, show that (F \ {0}, ·) is a group.

Exercise 2.9.9 Show that in a field F , the only ideals are F and {0}.
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Exercise 2.9.10 Show that each homomorphism from a field to a ring is either one to one or
maps everything onto 0.

Exercise 2.9.11 Find the characteristic of the following rings:

1. 2Z.

2. Z3 × 3Z.

3. Z5 × Z5.

Exercise 2.9.12 Show that the matrix
[
1 2
2 4

]
is a zero divisor inM2(Z).

Exercise 2.9.13 An element a of a ring R is idempotent if a2 = a. Show that a division ring
contains exactly two idempotent elements.

Exercise 2.9.14 If A and B are ideals of a ring R, then the sum A+B of A and B is defined
by

A+B = {a+ b | a ∈ A, b ∈ B}.

1. Show that A+B is an ideal of R.

2. Show that A ⊆ A+B.

Exercise 2.9.15 If A andB are ideals of a ringR, then the product AB of A andB is defined
by

AB =

{
n∑

i=1

aibi

∣∣∣∣ ai ∈ A, bi ∈ B,n ∈ Z+

}
.

1. Show that AB is an ideal of R.

2. Show that AB ⊆ (A ∩B).

Exercise 2.9.16 Find q(x) and remainder r(x) as described by the division algorithm so that

f(x) = g(x)q(x) + r(x)

with r(x) = 0 or of degree less than the degree of g(x).
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1. f(x) = x6 + 3x5 + 4x2 − 3x+ 2 and g(x) = x2 + 2x− 3 in Z7[x].

2. f(x) = x5 − 2x4 + 3x− 5 and g(x) = 2x+ 1 in Z11[x].

CHAPTER 2. RINGS | 85



3

Fields

3.1 Extenstion Fields

3.1.1 Simple Extension

Definition 3.1
Let E be an extension field of a field F and let a ∈ E. We call an element a algebraic over F
if a is the zero of some nonzero polynomial in F [x]. If a is not algebraic over F , it is called
transcendental over F .

Example 3.1.1. C is an extension field of R.

C

R

The imaginary number i =
√
−1 is said to be algebraic since x2 + 1 = 0 ∈ R[x]. While π is

transcendental since it is not a zero in R[x].

Theorem 3.1
LetK be an extension field of F , and u ∈ K is an algebraic element over F . Then there exists
a unique monic irreducible polynomial p(x) in F [x] that has u as a root. Furthermore if u is
a root of g(x) ∈ F [x], then p(x) divide g(x).

Proof. Notice that u ∈ K is algebraic over F if and only if there is a nonzero polynomial f(x) ∈ F [x]
such that f(u) = 0K .

Let S be the set of all nonzero polynomials in F [x] that have u as a root, then S is nonempty
set. By well-ordering principle, ∃p(x) ∈ S such that p(x) has the smallest degree in S.

Suppose that f(x) ∈ F [x]with f(u) = 0K . By division algorithm,

f(x) = p(x)q(x) + r(x)

with deg p(x) > deg r(x) or r(x) = 0.
If r(x) ̸= 0,

f(x)− p(x)q(x) = r(x) =⇒ f(u)− p(u)q(u) = r(u) = 0.

This contradicting the fact that p(x) is the smallest polynomial. Thus r(x) = 0 and p(x) divide f(x).
And now if we let p(x) and q(x) be the smallest polynomial. Then, p(x)|q(x) and q(x)|p(x) implies
that p(x) = q(x).
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Remark. The p(x) is called the ”minimal polynomial of u over F”.

Example 3.1.2. R is an extension field of Q and
√
3 ∈ R is algebraic, then

p(x) = x2 − 3 ∈ Q[x]

Example 3.1.3. R is an extension field of Q and
√
3 +
√
5 ∈ R is algebraic, Then

p(x) = x4 − 16x2 + 4 ∈ Q[x].

Solution Let x =
√
3 +
√
5 ∈ R, then

x2 = 3 + 2
√
15 + 5⇒ x2 − 8 = 2

√
15

⇒ (x2 − 8)2 = 4 · 15
⇒ x4 − 16x2 + 4 = 0

Thus p(x) = x4 − 16x2 + 4 ∈ Q[x]. ◀

Theorem 3.2
Let K be an extension field of F and u ∈ K is an algebraic element over F with minimal
polynomial p(x) of degree n, then

1. F [u] is a field isomorphism of F [x]/p(x).

2. {1, u, u2, . . . , un−1} is a basis of the vector space F (u) over F .

3. |F (u) : F | = n.

Proof. 1. Since F (u) contains F and u, so F (u) contains every element of the form

b0 + b1u+ b2u
2 + · · ·+ btu

t ∀bi ∈ F.

We again define a function φ : F [x]→ F (u) by

φ(f(x)) = f(u).

Then φ is ring homomorphism.

Note that ker φ = ⟨p(x)⟩ where p(x) is the minimal polynomial of u over F . By the first iso-
morphism theorem, F [x]/p(x) ∼= Imφ. Since p(x) is irreducible, the quotient ring F [x]/⟨p(x)⟩
is a field and Imφ is also a field.

Note that φ(c) = c ∀c ∈ F and φ(x) = u. Thus F ⊂ Imφ and u ∈ Imφ. By definition of
simple extension, F (u) = Imφ.

2. Since F (u) = Imφ, ∀w ∈ F (u),∃f(x) ∈ F s.t. f(u) = w. If deg f(x) > n. By division
algorithm, we have

f(x) = p(x)q(x) + r(x)

If r(x) = 0, f(u) = p(u)q(u) = 0 = w.
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Otherwise, if r(x) ̸= 0, then

r(x) = f(x)− p(x)q(x) =⇒ r(u) = f(u)− p(u)q(u) = w

with deg r(x) < n. Thus
F (u) = Span{1, u, u2, . . . , un−1}.

3. Let c0 + c1u+ c2u
2 + · · ·+ cn−1u

n−1 = 0. If ∃ck ∈ F s.t. ck ̸= 0. Then p(x) is not the minimal
polynomial of u over F . Thus ci = 0∀ci ∈ F . Hence, we can say that {1, u, u2, . . . , un−1} is
linearly independent and it is also a basis of F (u) over F =⇒ |F (u) : F | = n.

Example 3.1.4. Q[
√
3] is isomorphic to Q[

√
3]/⟨x2 − 3⟩

Example 3.1.5. If u and v have the sameminimal polynomial p(x) inF [x], thenF (u) is isomorphic
to F (v). For instance,

Q[
√
3] ∼= Q[−

√
3].

Let σ : F → E be an isomorphism then we again define σ : F [x]→ E[x] by for a0+a1x+ · · ·+
anx

n ∈ F [x]. We can write

σ(a0 + a1x+ · · ·+ anx
n) = σ(a0) + σ(a1x) + · · ·+ σ(anx

n) (3.1)

and σ is also isomorphism.

Corollary 3.1
Let σ : F → E be an isomorphism of fields. Let u be an algebraic element in ”some” exten-
sion field of F with minimal polynomial p(x) ∈ F [x]. Again we let v be an algebraic element
in some extension field of E with minimal polynomial σp(x) ∈ E[x]. Then σ extends to an
isomorphism of fields σ : F (u)→ E(v) such that

σ(u) = v and σ(c) = σ(c) ∀c ∈ F.

Proof. By previous theorem, φ : F [x]/ (p(x)) → F (u) and φ : E[x]/ (σp(x)) → E(v) are isomor-
phism where φ([f(x)]) = f(u) and φ([g(x)]) = g(v).

Furthermore, we let ξ be the surjective isomorphism

ξ : E[x]→ E[x]/(σp(x))

defined by ξ(g(x)) = |g(x)|.
Note that

F [x] E[x] E[x]/ (σp(x)) E[v]

f(x) σf(x) [σf(x)] σf(v)

σ ξ φ
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Since σ, φ and xi are surjective, so is the composite function.

ker ϕ(ξ(σ)) = {f(x) ∈ F [x] | σf(v) = 0}
= {f(x) ∈ F [x] | σf(x) ∈ ⟨σf(x)⟩}
= ⟨p(x)⟩

By First isomorphism theorem,

F (u) ∼= F [x]/⟨p(x)⟩ ∼=θ E(v)

Since θ([f(x)]) = σf(v). Note that

θ([x]) = σ · 1F · v = 1V · v = v

so we have the following situation

F (u) F [x]/⟨p(x)⟩ E(v)

f(u) [f(x)] σf(v)

c [c] σ(c)

φ
θ

φ
θ

φ
θ

The composite function θ ◦ φ−1 : F (u)→ E(v) is an isomorphism that extends σ and maps u
to v.

By First isomorphism thm.

F E

F [x] E[x]

F (u) F [x]/⟨p(x)⟩ E[x]/⟨σp(x)⟩ E(v)

σ

⊆ ⊆

σ

ξ ξ

φ σ φ

Example 3.1.6. x3 − 2 is irreducible in Q[x] by Eisenstein’s criterion. 3
√
2 ∈ R is a root of it. Verify

that 3
√
2ω is also a root of x3 − 2 in C where

ω =
−1 +

√
3i

2

is a complex cube root of 1.
Solution Let σ be the identity function fromQ toQ. By applying the previous corollary, we have

Q(
3
√
2) ∼=θ Q(

3
√
2ω)

such that σ( 3
√
2) = 3

√
2ω. And now ( 3

√
2ω)3 = 2ω3 = 2. ◀
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3.1.2 Algebraic Extension

Definition 3.2 Algebraic extension
An extension fieldK of a field F is said to be an algebraic extension of F if every element of
K is algebraic over F .

Example 3.1.7. C is an algebraic extension of R. ∀a + bi ∈ C, where a, b ∈ R and i =
√
−1. We

have
(x+ a+ bi)(x+ a− bi) = x2 + 2ax+ a2 + b2.

Thus a+ bi is a root of x2 + 2ax+ a2 + b2 = 0.

Theorem 3.3
IfK is a finite-dimensional extension field of F , thenK is an algebraic extension of F .

Proof. Let {V1, V2, . . . , Vn} be the basis of K over F . For all u ∈ K, {1, u, u2, . . . , un} is linearly
dependent. That is,

∃uk ∈ K s.t. uk = Span{1, u, u2, . . . , un} = c0 + c1u+ c2u
2 + · · ·+ ck−1u

k−1(k ≥ 1).

Thus u is a root of f(x) = xk − ck−1u
k−1 − · · · − c0, this implies K is an algebraic extension.

In fact, a simple extension is an algebraic extension if u is algebraic. If extension field K con-
tains a transcental element u, then K must be infinite dimensional over F .

Non algebraic =⇒ Infinite dimension

Note thatF (u)denote the intersection of all subfields ofK that contains bothF and u. It said to be a
simple extension of F . If u1, u2, . . . , un are elements of an extension fieldK of F . Let F (u1, . . . , un)
denote the intersection of all the subfields ofK that contain F and every u (known as generalized
simple extension); F (u, u1, . . . , un) is said to be a finitely generated extension of F .

Theorem 3.4
If K = F (u1, u2, . . . , un) is a finitely generated extension field of F and each ui is algebraic
over F , thenK is a finite-dimensional algebraic extension of F .

Proof. Note that if u, v is algebraic over F , then v is algebraic over F (u). Thus

|F (u, v) : F (u)| · |F (u) : F | <∞ =⇒ |F (u, v) : F | = |F (u, v) : F (u)| · |F (u) : F | <∞.

By mathematical induction, we have

|F (u1, u2, . . . , un) : F (u1, u2, . . . , un−1)| . . . |F (u1) : F | <∞

which is also finite.
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Corollary 3.2
If L is algebraic extension of K and K is an algebraic extension of L. Then L is an algebraic
extension field of F .

Proof. ∀ω ∈ L, ∃f(x) ∈ K[x] s.t. f(ω) = a0 + a1ω + · · ·+ anω
n.

Note that F (a0, a1, . . . , an) is finitely generated extension of F and all ai’s
are algebraic. Thus it is finite dimensional algebraic extension of F . Since ω is algebraic over
F (a0, a1, . . . , an). So F (a0, a1, . . . , an) is finite dimensional extension of F =⇒ ω is algebraic over
F . Thus L is an algebraic extension of F .

Remark. Algebraic subfield E of C over Q is called the field of algebraic numbers. Where E is an finite-
dimensional algebraic extension overK.

C

E

Q

π
µ

• µ denote algebraic extension over Q, e.g.:
√
2,
√
3, i, . . ..

• π denote non-algebraic extension.

Corollary 3.3
Let K be an extension field of F and let E be the set of all elements of K that are algebraic
over F . Then E is a subfield ofK and an algebraic extension field of F .

Proof. We only need to show that E is a field. Let u, v ∈ F , note that F (u, v) is finitely gener-
ated extension of F , so E is algebraic extension. E is closed under subtraction and multiplication.
Moreover u−1 is algebraic over F . Thus E is a subfield ofK.

Example 3.1.8.
Q(i,−i) = Q(i)

Example 3.1.9.
Q(
√
3, i) = Q(

√
3)(i)

Solution
|Q(
√
3, i)| = |Q(

√
3)(i) : Q|

= |Q(
√
3)(i) : Q(

√
3)| · |Q(

√
3) : Q|

= 2 · 2
= 4

◀
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Example 3.1.10. Every finite-dimensional extension is also finitely generated. If {u1, u2, . . . , un}
is a basis ofK over F . This implies F (u1, u2, . . . , un) ⊆ K andK ⊆ F (u1, u2, . . . , un). Thus,

K = F (u1, u2, . . . , un) = Span{u1, u2, . . . , un}.

Example 3.1.11 (Non-example).
Q(
√
3,
√
5) ̸= Q(

√
3)

Solution For the sake of contradiction, consider Q(
√
3,
√
5) = Q(

√
3), then

√
5 = a+ b

√
3, ∀a, b ∈ Q

Altering this equation by moving a to left-hand side, then squaring both sides. We obtain

(
√
5− a)2 = (b

√
3)2 ⇒ 5− 2

√
5a+ a2 = 3b2

⇒ 5 + a2 − 3b2

2a
=
√
5 (a ̸= 0)

However, when a = 0, we have 5 = 3b2. Which is a contradiction. ◀

3.2 Splitting Field

In last chapter we had discussed about the integral domain. Suppose polynomial f(x) has degree
n. Then f(x) has at most n roots in any field. Suppose that K contains fewer than n roots of f(x).
It might be possible to find an extension field ofK that contains additional roots of f(x).

Definition 3.3 Splitting field
If F is a field and f(x) ∈ F [x], then an extension field K of F is said to be a splitting field
(or root field) of f(x) over F provided that

• f(x) splits overK, say
f(x) = c(x− u1) . . . (x− un) (3.2)

• and
K = F (u1, u2, . . . , un).︸ ︷︷ ︸

smallest field

(3.3)

Example 3.2.1. If f(x) = x4 − x2 − 2 = (x2 − 2)(x2 + 1) in Q[x]. Then

Q(
√
2,−
√
2, i,−i) = Q(

√
2, i)

is a splitting field of f(x) over Q.
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3.3 Finite Fields

Theorem 3.5
Let R be a ring with identity. Then

1. The set
P = {k · 1R | k ∈ Z}

is a subring of R.

2. If R has characteristic 0, then P is isomorphic to Z.

3. If R has characteristic n > 0, then P is isomorphic to Zn.

Proof. We prove each of the statements listed above.

1. First of all, we use subring test to check if P is a subring of R.{
a · 1R − b · 1R = (a− b) · 1R ∈ P

a · 1R · b · 1R = ab 1R ∈ P

so P is a subring of R.

We now prove (2), (3) at once, We consider a map f : Z→ R defined by

f(n) = n · 1R ∀n ∈ Z.

Then f is homomorphism because

f(n+m) = (n+m) · 1R = f(n) + f(m)

and the kernel is
ker f = {n ∈ Z | n · 1R = 0R}.

By the first isomorphism theorem, Z/ker f is isomorphic to R.

• If R has a characteristic 0, then ker f = ⟨0⟩ =⇒ Z ∼= R.
• If R has a characteristic n, then ker f = ⟨n⟩ =⇒ Z/⟨n⟩ ∼= R.

Corollary 3.4
Every finite field has characteristic p for some prime p.

Proof. Since finite field is integral domain, it must has characteristic prime p.
Remark. 1. The converse of it is false. There are infinite fields of characteristic p (i.e. Zp[x]).

P = {k · 1R | k ∈ Z}

is called the prime subfield of K and is contained in every subfield of K. Which means every field of
characteristic p must contains Zp.
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2. The number of elements in a finite field K is called the order ofK.

3.3.1 Order of finite field

Theorem 3.6
A finite fieldK has order pn, where p is the characteristic ofK and n = |K : Zp|.

Proof. Let K be a finite dimensional extension of Zp. Let n = |K : Zp|, then {u1, u2, . . . , un} is a
basis of K.
∀k ∈ K, k is represented uniquely be

k = c1u1 + c2u2 + · · ·+ cnun.

There are precisely pn distinct linear combinations of the form. Thus |K| = pn.

Lemma 3.1 The Freshman’s dream
Let R be a commutative ring with identity of characteristic p, where p is a prime. Then for
every a, b ∈ R and for all positive integer n we have

(a+ b)p
n
= ap

n
+ bp

n
. (3.4)

Proof. We will use the induction on n.
Assume n = 1, we expand (a+ b)p with binomial theorem.

(a+ b)p =

p∑
k=0

(
p

k

)
an−kbk = ap +

(
p

1

)
ap−1b+ · · ·+

(
p

p− 1

)
abp−1 + bp.

Note that (
p

k

)
=

p!

(p− k)! k!
, k, p− k < p for 1 ≤ k < p.

This implies that p divide (pk) =⇒ (
p
k

)
ap−kbk = 0 (mod p). Thus (a+ b)p = ap + bp. We are done for

base case.
Assume that it holds for all less than n.

(a+ b)p
n
= ((a+ b)p)p

n−1

= (ap + bp)p
n−1

= (ap)p
n−1

+ (bp)p
n−1

= ap
n
+ bp

n
.

Therefore the theorem is true for every positive integer n. Now we are done.

Theorem 3.7 Existence of finite field
Let K be an extension field Zp. For all positive integer n, K has order pn if and only if K is
a splitting field of xpn − x over Zp.
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Proof. (⇒) Let f(x) = xp
n − x over Zp. Then

f(x) = pnxp
n−1 − 1 = −1

and so f(x) and f ′(x) are relatively prime =⇒ f(x) is separable. Then f(x) has pn distinct roots
in splitting field. Let c be any nonzero element of K. Let {c1, c2, . . . , cpn−1} be all the nonzero
elements ofK and let

u = c1c2 · · · ck.

Note that {cc1, cc2, . . . , cck} are all distinct and nonzero elements ofK. Thus

{cc1, cc2, . . . , cck} = {c1, c2, . . . , cpn−1}

and
cc1 · cc2 · · · ccpn−1 = c1 · c2 · · · cpn−1 ⇒ cp

n−1 = 1K ⇒ cp
n − c = 0.

So all nonzero elements ofK consisting of the pn distinct roots of xpn − x over Zp.
(⇐) On the other hand, let E be the subset of K consisting of the pn distinct roots of xpn − x.

We want to show E is a subfield ofK.
For all a, b in E, apn = a and bp

n
= b. So

(a+ b)p
n
= ap

n
+ bp

n
= a+ b⇒ a+ b ∈ E

(ab)p
n
= ap

n
bp

n
= ab⇒ ab ∈ E

(−a)pn = (−1)pn apn = −a⇒ a ∈ E

and
(a−1)p

n
= (ap

n
)−1 = a−1.

Clearly 0, 1 ∈ E. Since K is a field, the rest of axioms are true. Since K is splitting field of
xp

n − x,K ⊆ E. HenceK = E and |K| = |E| = pn.

3.4 Galois Theory

The classical question of algebra : Whether or not there were formulas for the solution of higher
degree polynomial equations. There are no formula for the solution of all polynomial equations of
degree n when n ≥ 5.

Galois theory had a profound influence on the development of later mathematics for beyond
the scope of the original solvability problem. Why? Because his theory connecting the field exten-
sions with groups.

Definition 3.4 Galois group
Let K be an extension field of F . An F -automorphism of K is an isomorphism σ : K → K
that fixes F elementwise. That is, σ(c)→ c,∀c ∈ F .
The set of all F -automorphisms ofK is denotedGalF K and is called the Galois group ofK
over F .

Theorem 3.8
If K is an extension field of F , then GalF K is a group under the operation of composition
of functions.
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Proof. We need to show that the function composition from a group:
[Closedness]: ∀σ, τ ∈ GalF K, σ ◦ τ(c) = c ∀c ∈ F .
[Associativity]: Associativity holds because of function composition’s property.
[Existence of identity]: ∀σ ∈ GalF K, σ ◦ τ = τ ◦ σ = σ.
[Existence of inverse]: ∀σ ∈ GalF K, σ−1(c) = c ∀c ∈ F . So σ−1 is the inverse in GalF K.

Theorem 3.9
LetK be an extension field of F and f(x) ∈ F [x]. If u ∈ K is a root of f(x) and σ ∈ GalF K,
then σ(u) is also a root of f(x).

Proof. Take a u ∈ K, f(u) = 0 =⇒ σ(f(u)) = σ(0) = 0.
Since σ ∈ GalF K,σ (f(u)) = f (σ(u)) = 0.

Remark. Every root of p(x) inK is the image of u under some automorphism of GalF K.

Theorem 3.10
Let K be the splitting field of some polynomial over F and u, v ∈ K. Then there exists an
σ ∈ GalF K such that σ(u) = v if and only if u and v have the same minimal polynomial.

Proof. (⇒) Note that ifK is splitting field of f(x) with deg f = n. Then

|K : F | ≤ n! =⇒ K is algebraic over F.

So u has a minimal polynomial q(x) over F .
By previous theorem, p(v) = 0 and q(u) = 0. These imply p(x)|q(x) and q(x)|p(x) and hence

p(x) = q(x). We are done for this direction.
(⇐) On the other hand, in simple extension, we can extend an isomorphism σ : F → F to

σ : F → F such that σ(u) = v and σ(c) = c for all constant c ∈ F .
Since K is splitting field of some polynomial over F , which is also a splitting field of F (u)

and F (v). We can extend an isomorphism σ to an isomorphism σ̃ : K → K. If σ = 1, then
σ̃ ∈ GalF K.

Example 3.4.1. Given that σ ∈ GalRC, find σ(i).
Solution By previous theorem,

σ(i) = {i,−i}.

Thus GalF K = {1, σ} is a group of order 2 and hence GalRC is isomorphic to Z2. ◀

Theorem 3.11 Galois group of finitely generated extension
LetK = F (u1, u2, . . . , un) be an algebraic extension field of F . If σ ◦ τ ∈ GalF K and σ(ui) =
τ(ui) for each i = 1, 2, . . . , n. Then σ = τ .
In other words, an automorphism in GalF K is completely determined by its action on
u1, u2, . . . un.
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Proof. Let β = σ−1 ◦ τ , then
σ−1 ◦ τ(ui) = σ−1 ◦ σ(ui) = ui.

Let v ∈ F (ui), then there exists a constant ci ∈ F such that

c0 + c1u1 + · · ·+ cn−1u
n−1
1 = w =⇒ β(v) = v.

Again we let w ∈ F (u1, u2), then there exists a constant ci ∈ F such that

c0 + c1u2 + · · ·+ cn−1u
n−1
2 = w =⇒ β(w) = w.

Repeating this process, we conclude that for all v ∈ K, β(v) = v =⇒ β = 1. Thus τ = σ.

Example 3.4.2. Consider σ ∈ GalQQ[
√
3,
√
5]. We let two actions

τ(
√
3) = −

√
3, τ(

√
5) =

√
5

and
α(
√
3) =

√
3, α(

√
5) = −

√
5

and defined β = α ◦ τ .
Then GalQQ[

√
3,
√
5] = {1, τ, α, β} such that

1 τ α β√
3
√
3 −

√
3

√
3 −

√
3

√
5
√
5

√
5 −

√
5 −

√
5

Note that τ, α, β both have an order 2. Thus GalQQ[
√
3,
√
5] ∼= Z2 × Z2.

Corollary 3.5
If K is splitting field of a separable polynomial f(x) of degree n in F [x], then GalF K is
isomorphic to a subgroup of Sn.

Proof. Let u1, u2, . . . , un be distinct roots of f(x). ThenK = F (u1, u2, . . . , un) and let

U = {u1, u2, . . . , un}.

For all permutation σ ∈ GalF K, ∀1 ≤ i ≤ n, σ(ui) = uj for some j.
Now define a function θ : GalF K → Sn defined by θ : σ 7→ σ ◦ 1U . θ is well defined. Note that

σ ◦ 1U = τ ◦ 1U =⇒ σ = τ

by previous theorem. Thus θ is injective, and θ is homomorphism.
By the first isomorphism theorem, we say that

GalF K ∼= Im θ = a subgroup of Sn.
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Definition 3.5 Intermediate field
LetK be an extension field of F . A field E such that

F ⊆ E ⊆ K

is called an intermediate field of the extension. Clearly that GalE K ∼= GalF K.

Theorem 3.12
LetK be an extension field of F . If H is a subgroup of GalF K, let

EH = {k ∈ K | σ(k) = k for every σ ∈ H}.

Then EH is an intermediate field of the extensionK. The field EH is called the ”fixed field”
of subgroup H .

Proof. It is clear that F ⊆ EH ⊆ K. So we only want to show that EH is a subfield.
Let a, b ∈ H . For all σ ∈ H , we have

σ(a+ b) = σ(a) + σ(b) = a+ b

σ(ab) = σ(a)σ(b) = ab

σ(0K) = 0K , σ(1K) = 1K

σ(−a) = −σ(a) = −a

σ(a−1) = (σ(a))−1 = a−1

Thus EH is a subfield of K.

Example 3.4.3. From previous example,

Q ⊆ Q[
√
3] ⊆ Q[

√
3,
√
5].

And GalQ[
√
3]Q[
√
3,
√
5] = {1, α}, and GalQQ[

√
3,
√
5] = {1, τ, α, β}.

Example 3.4.4. GalQ[
√
3]Q[
√
3,
√
5] = {1, α} is the fixed field of Q[

√
3] = {1, α}, where

α(
√
3) =

√
3, α(
√
5) = −

√
5.

Solution For all ai ∈ Q. Compute

α(a0 + a1
√
3 + a2

√
5 + a3

√
15) = a0 + a1

√
3 + a2

√
5 + a3

√
15

⇐⇒ a0 + a1
√
3− a2

√
5− a3

√
15 = a0 + a1

√
3 + a2

√
5 + a3

√
15

⇐⇒ a2
√
5 + a3

√
15 = 0

⇐⇒ a2 + a3
√
3 = 0

Since a2a−1
3 ∈ Q =⇒ −

√
3 ∈ Q, which is a contradiction. ◀
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Example 3.4.5. GalRC = {1, α}, and α(a + bi) =⇒ a − bi = a + bi =⇒ b = 0. Thus fixed field of
GalRC is the field R.

Remark. The ground field F need not always be the fixed field of the group GalF K.

Example 3.4.6. 3
√
2 is the root of x3− 2 = 0. So 3

√
2 7→ { 3

√
2, 3
√
2ω, 3
√
2ω2}, where ω is the cube root

of unity.
However, 3

√
2ω, 3
√
2ω2 /∈ Q[ 3

√
2]. ∀σ ∈ GalQQ[ 3

√
2], σ( 3

√
2) = 3

√
2. Thus σ = 1. The fixed field of

GalQQ[ 3
√
2] is Q[ 3

√
2].

3.4.1 Fundamental Theorem of Galois theory

Definition 3.6 Galois correspondence
Let K be a finite-dimensionalextension field of F , and let S be the set of all intermediate
fields. Again we let T be the set of all subgroups of the Galois group GalF K.
Define a map ϕ : T → S by this rule. For each intermediate field E,

ϕ(E) = GalE K. (3.5)

This function ϕ is called the Galois correspondence.

GalK K K

GalF K F

ST

Example 3.4.7.
Q→ GalQQ(

√
3,
√
5) = {1, τ, α, β}

Lemma 3.2
Let K be a finite-dimensional extension field of F . If H is a subgroup of the Galois group
GalF K and E is the fixed field of H , thenK is simple, normal, separable extension of E.

GalF K K

H EH

Proof. Since K is finite-dimensional extension field, so K is algebraic over F . Let U ∈ K and
p(x) ∈ E[x] be minimal polynomial of U, and ∀σ ∈ H , σ(U) is some root of p(x).

Therefore, U has a finite number of distinct images under automorphisms in H , said

U = u1, u2, . . . , ut ∈ K, where t ≤ deg p(x)

If σ ∈ H and ui = τ(U) with τ ∈ H , then σ(ui) = σ ◦ τ(U).
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Since σ is injective, so
U

H
↪−→ {u1, u2, . . . , ut}

which {u1, u2, . . . ut} is image of U. And ui = τ(U) for some τ ∈ H . is injective

{u1, u2, . . . , ut} ↪−−−−−−−−→permutation σ
{u1, u2, . . . , ut}

Every automorphism in H permutes u1, u2, . . . , ut. Let

f(x) = (x− u1)(x− u2) . . . (x− ut)

Since all ui’s are distinct, f(x) is separable.
Now we claim that f(x) ∈ E[x]. Note that σf(x) = f(x) for all σ ∈ H . All coefficients of f(x)

is fixed by σ ∈ H . Thus f(x) ∈ E[x]. Since u = u1 is a root of f(x) ∈ E[x], u is separable over
E. =⇒ K is separable extension of E.

From the previous theorem,K = E(V ) for some V ∈ K. Let g(x) = (x− v)(x− v2) . . . (x− vs)
where {v1 = v, v2, . . . , vs} are images of σ ∈ H . Similarly, g(x) ∈ E[x] and K = E(v) is splitting
field of g(x). Therefore K is normal extension of E.

Definition 3.7 Galois extension
If K is a finite dimensional, normal, separable extension field of the field F , we say that K
is a Galois extension of F or thatK is Galois over F .

Corollary 3.6
Let K be a finite dimensional extension field of F . Then K is Galois over F if and only if F
is fixed field of the Galois group over F .

Proof. (⇒) By previous theorem, E = F . Thus F is fixed field of the Galois group over F .
(⇐) By lemma,K is simple, normal, separable extension of F .

Theorem 3.13 Fundamental theorem of Galois Theory
IfK is a Galois extension field of F ,

1. There is a bijection between the set S of all the intermediate fields of the extension
and the set T of all subgroups of the Galois group GalF K, given by assigning each
intermediate field E to the subgroup GalE K. Furthermore

|K : E| = |GalE K|

and
|E : F | = |GalF K : GalE K|.

2. An intermediate fieldE is normal extension ofF if and only if the corresponding group
GalE K is a normal subgroup of GalF K.

Proof. 1. By theorem, fixed field of GalE K is E. By theorem we have

|GalE K| = |K : E|.

100 | CHAPTER 3. FIELDS



Similarly,
|GalF K| = |K : F |.

In fact |K : F | = |K : E| |E : F |. Thus

|GalF K| = |GalE K| · |E : F | =⇒ |E : F | = |GalF K : GalE K|.

2. (⇐)Assume first thatGalE K is a normal subgroup ofGalF K. If p(x) is an irreducible poly-
nomial in F [x] with a root u ∈ E, we must show that p(x) splits in E[x].
Since K is normal over F . We know that p(x) splits in K[x]. So we know that p(x) also
splits in K[x]. So we need to show that each root v of p(x) in K is actually in E. There is an
automorphism σ ∈ GalF K such that σ(u) = v by theorem. So GalF K = |K : F | = E.

K = F (u) F (u) = K

F F

σ

1

Now if τ is any element of GalE K, then normality implies

τ ◦ σ = σ ◦ τ ′ for some τ ′ ∈ GalE K.

Since u ∈ E, we have

τ(v) = τ (σ(u))

= σ
(
τ ′(u)

)
= σ(u)

= v.

So GalE K fixes other roots for all v ∈ E. Thus E is normal extension of F .
(⇒) Assume that E is normal subgroup of F . Then there exists a surjective homomorphism
of groups θ : GalF K → GalF E whose kernel is GalE K. Then GalE K is normal subgroup
of GalF K.
Therefore by First isomorphism theorem, GalF E ∼= GalF K/GalE K.

Lemma 3.3
LetK be a finite-dimensional normal extension field of F andE an intermediate field which
is normal over F . Then there is a surjective homomorphism of groups

θ : GalF K → GalF E

where kernel of θ is GalE K.

Proof. Let σ ∈ GalF K and an u ∈ E. Then u is algebraic over F with minimal polynomial p(x).
SinceE is normal, all roots of p(x) are inE. Since σ(u) is also root of p(x), σ(u) ∈ E. Therefore

σ(E) ⊆ E ∀σ ∈ GalF K.
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Thus we can restrict σ to E and σ ◦ 1E is an F -isomorphism that is E ∼= σ(E). Hence,

|E : F | = |σ(E) : F |.

Since K is splitting field over F , K is also splitting field over E. ∀σ ∈ GalF E. σ can be
extended to an F -automorphism in GalF K. Its kernel consists of the automorphisms ofK whose
restriction to E is the identity map as GalE K.

Example 3.4.8. Let K be the splitting field of x3 − 2. Note that

Q ⊆ Q[
3
√
2] ⊆ K

and |Q[ 3
√
2] : Q| = 3. K is Galois extension of Q such that

|GalQK| = |K : Q|

and GalQK is isomorphic to a subgroup of S3.

3 < |K : Q| ≤ 6 =⇒ 3 < |K : Q[
3
√
2]| · |Q[

3
√
2] : Q| ≤ 6

=⇒ 3 < 3 |K : Q[
3
√
2]| ≤ 6

=⇒ 1 < |K : Q[
3
√
2]| ≤ 2.

We must have |K : Q| = 6 and GalQK ∼= S3.
Q[ω] is the splitting field of x2 + x + 1 and hence Q[ω] is normal and separable. Thus K is

Galois over Q.

3.5 Solvability by Radicals

We shall assume that all fields have characteristic 0. A ”formula” is a specific procedure that starts
with coefficients of the polynomial f(x) ∈ F [x] and arrives at the solutions of equation f(x) = 0F
by using only the field operations (+F ,−F ,×F ,÷F ) and the extraction of roots (such as n

√
·).

In this context, an n-th root of an element c in field F is any root of the polynomial xn − c in
some extension field of F . If that ”formula” really exists, then there exists an extension field K of
F such that

F ⊇ F ′ ⊇ . . . ⊇ K

splitting field of xn−c splitting field of xn′−c′

Example 3.5.1. The solutions of x3 + 3x+ 2 = 0 ∈ Q[x] are

3
√
−1 +

√
2 +

3
√
−1−

√
2 ω

3
√
−1 +

√
2 + (ω2)

3
√
−1−

√
2 (ω2)

3
√
−1 +

√
2 + ω

3
√
−1−

√
2

Definition 3.8 Radical extensions
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A fieldK is said to be a radical extension of a field F if there is a chain of fields

F = F0 ⊆ F1 ⊆ . . . ⊆ Ft = K

such that for each i = 1, 2, . . . , t. Fi = Fi−1(ui) and some power of ui is in Fi−1 (uKi
i ∈ Fi−1).

The equation f(x) = 0F is said to be solvable by radicals if there is a radical extension of F
that contains a splitting field of f(x). If not, then f(x) is not solvable by radical.

Definition 3.9 Solvable groups
A group G is said to be solvable if it has a ”chain” of subgroups

G = G0 ▷ G1 ▷ . . . ▷ Gn−1 ▷ Gn = ⟨e⟩

and Gi−1/Gi is abelian.

Example 3.5.2. Every abelian group G is solvable. G ⊇ ⟨e⟩ and G/⟨e⟩ ∼= G is abelian.
Solution Since S3 ▷ ⟨(1 2 3)⟩, and

(1 2) ⟨(1 2 3)⟩ = {(1 2), (1 3), (2 3)}

⟨(1 2 3)⟩ (1 2) = {(1 2), (2 3), (1 3)}

◀

Theorem 3.14
For n ≥ 5 the group Sn is not solvable.

Proof. For the sake of contradiction, suppose that Sn is solvable and that

Sn = G0 ⊇ G1 ⊇ · · · ⊇ Gt = ⟨1⟩.

Let (r s t) be any 3-cycle in Sn and let α, β be any element of {1, 2, . . . , n} other than r, s, t (they
always exist since n ≥ 5). Since Sn/G1 is abelian, by theorem of dihedral group,

(t α s)(s r β)(t α s)−1(s r β)−1 = (t α s)(s r β)(t s α)(s β r)

= (r s t) ∈ G1

Note that the cycle ⟨(r s t)⟩ ⊆ G1, andG1 definitely contains all the 3-cycles sinceG1/G2 is abelian,
repeating upper process, G2 also contains ⟨(r s t)⟩.

In conclusion, ∀i ∈ {1, 2, . . . , n}, Gi contains all the 3-cycles. This contradicting the fact that
Sn is solvable.

Theorem 3.15
Every homomorphic image of a solvable group G is solvable.
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Proof. Let G be a solvable group. Then there exists a chain of groups

G = G0 ⊇ G1 . . . ⊇ Gn = ⟨e⟩

such that for all i, Gi−1 ▷ Gi and Gi−1/Gi is abelian.
Consider f is the homomorphism of G. Then f(Gi) is also a group, and the chain of group is

now
f(G) = f(G0) ⊇ f(G1) . . . ⊇ f(Gn) = ⟨e⟩

and aba−1b−1 ∈ Gi whenever a, b in Gi−1. This implies

f(aba−1b−1) = f(a)f(b)f(a)−1f(b)−1 ∈ f(Gi) ∀a, b ∈ Gi−1

and
∀c, d ∈ f(Gi−1), ∃a, b ∈ Gi−1 s.t. f(a) = c and f(b) = d.

So we have
f(a)f(b)f(a)−1f(b)−1 = cdc−1d−1 ∈ f(Gi).

Therefore f(Gi−1)/f(Gi) is abelian. Hence f(G) is solvable group.

Definition 3.10
A generator of this cyclic group of n-th roots of unity in K is called a primitive n-th root of
unity.

This definition states that ζ is a primitive n-th roots of unity iff ζ, ζ2, . . . , ζn are the n distinct
n-th roots of unity.

Example 3.5.3. Consider x4 − 1 ∈ Q[x]. The 4-th roots of unity in C = {1,−1, i,−1} = ⟨i⟩. i and
−i are primitive 4-th root of unity in C.

Example 3.5.4. According to De Moivre’s theorem,

cos

(
2π

n

)
+ i sin

(
2π

n

)
is a primitive n-th root of unity in C.

Theorem 3.16
Every homomorphic image of a solvable group G is solvable.

Proof. Let G be a solvable group. Then there exists a chain of groups

G = G0 ⊇ G1 ⊇ . . . ⊇ Gn = ⟨e⟩

such that Gi−1 ▷ Gi and Gi−1/Gi is abelian ∀i.
Let f be the homomorphism of G, then f(Gi) is also a group. The chain of group is now

f(G) = f(G0) ⊇ f(G1) ⊇ . . . ⊇ f(Gn) = ⟨e⟩
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and ∀a, b ∈ Gi−1, we have aba−1b−1 ∈ Gi. And

f(aba−1b−1) = f(a)f(b)f(a)−1f(b)−1 ∈ f(Gi).

And for all c, d in f(Gi), there exists some a, b ∈ Gi such that f(a) = c and f(b) = d. So

f(a)f(b)f(a)−1f(b)−1 = cdc−1d−1 ∈ f(Gi).

Thus f(Gi−1)/f(Gi) is abelian. Thus f(G) is solvable group.

Lemma 3.4
Let F be a field and ζ a primitive n-th root of unity of F . Then F contains a primity d-th root
of unity for every positive divisor d of n.

Proof. Because ζ is a primitive n-th root of unity of F , that is, ζn = 1F . If ζ has order n and n = dk,
ζk has order d.

Note that {ζk, ζ2k, . . . , ζnk} are all distinct and roots of xd−1F . Thus ζk is a primitive d-th root
of unity.

Example 3.5.5. There is no formula (involving only field operations and extraction of roots) for
the solution of all 5th-degree polynomial equations.
Solution Consider f(x) = 2x5 − 10x+ 5 ∈ Q[x]. We check the zeros of the derivatives.

f ′(x) =
d

dx
2x5 − 10x+ 5 = 10x4 − 10 =⇒ roots are ± 1,±i

f ′′(x) =
d2

dx2
2x5 − 10x+ 5 = 40x3 =⇒ the only root is 0.

−2 −1 1 2

−10

10

2x5 − 10x+ 5

Figure 3.1: By graph, f(x) = 2x5 − 10x+ 5 has 3 real roots.

Note that by Eisenstein’s criterion, 5|10, 5|4, but 5 ∤ 2 and 52 ∤ 5. So f(x) is irreducible in Q[x].
If K is splitting field of f(x) in C. Then

|GalQK| = [K : Q]
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Since K is Galois field of Q.
If r is any root of f(x), then

|K : Q| = |K : Q(r)| · |Q(r) : Q| = 5 |K : Q(r)|.

Thus |K : Q| is divisible by 5. By Cauchy’s theorem, there exists sigma ∈ GalQK with ord(σ) = 5.
Note that GalQK ⊆ S5 and the only elements of order 5 are (5-cycles), the 5-cycle is in GalQK.
The complex conjugation a+ bi 7→ a− bi induces an automorphism onK since σ ∈ GalQC, σ|K ∈
GalQK.

Since σ|K interchanges the two nonreal roots of f(x), implies that GalQK contains a transpo-
sition (2-cyle). Note that the only subgroup of S5 that contains both a 5-cycle and a transposition
is S5 itself. So GalQK = S5 =⇒ f(x) is not solvable by radicals.

◀

Tutorials

Exercise 3.5.1 Let E be an extension field of a field F and let α ∈ E be transcendental over
F . Show that every element of F (α) is not in F is also transcendental over F .

Exercise 3.5.2 Let F be a finite field of characteristic p. Show that every element of F is
algebraic over the prime field Zp ≤ F .

106 | CHAPTER 3. FIELDS


